Direct Variation

direct variation: an equation in the form
\[y = kx \], where \(k \neq 0 \).

\(k \) is the constant of variation, which is another way to express the slope of an equation of \(y = kx \).

<table>
<thead>
<tr>
<th>The (y) value is (-3) times the value of (x).</th>
<th>The total cost (C) of gasoline is $3.00\ times the number of gallons (g).</th>
</tr>
</thead>
<tbody>
<tr>
<td>The (y) value is (\frac{2}{5}) times the value of (x).</td>
<td>The total cost (C) of bulk jelly beans is $4.49\ times the number of pounds (p).</td>
</tr>
</tbody>
</table>
Another way to express the slope of a line is \(y = kx \).
Suppose y varies directly as x, and $y = 9$ when $x = -3$. Find x when $y = 15$.

\[y = kx \]
\[9 = k(-3) \]
\[\frac{9}{-3} = k \]
\[-3 = k \]
\[y = -3x \]
\[15 = -3x \]
\[\frac{15}{-3} = x \]
\[-5 = x \]

If $y = 15$ when $x = 12$, find y when $x = 32$.

\[y = kx \]
\[15 = k(12) \]
\[\frac{15}{12} = k \]
\[\frac{5}{4} = k \]
\[y = \frac{5}{4}x \]
\[y = \frac{5}{4}(32) \]
\[y = 40 \]

If $y = -11$ when $x = 6$, find x when $y = 44$.

\[y = kx \]
\[-11 = k(6) \]
\[\frac{-11}{6} = k \]
\[y = -\frac{11}{6}x \]
\[44 = -\frac{11}{6}x \]
\[44 = -\frac{11}{6}x (-\frac{6}{11}) \]
\[24 = x \]