Complete without a calculator.

For each function listed:
- State the equation for the axis of symmetry.
- State the vertex, \(y \)-intercept, domain, range.
- Graph the parabola.

1. \(f(x) = x^2 + 4x + 8 \)
2. \(f(x) = -x^2 - 6x - 2 \)
3. \(f(x) = 2x^2 - 5 \)
4. \(f(x) = 2 - 6x - 3x^2 \)

For each function listed:
- Determine whether it has a maximum or minimum value.
- State the maximum or minimum value of the function.
- State where the maximum or minimum value of the function occurs.

5. \(f(x) = 2x^2 + 8x - 3 \)
6. \(f(x) = -4x^2 + 12 \)
7. \(f(x) = x^2 - 10x \)
8. \(f(x) = -6x - 3x^2 - 4 \)

Solve each quadratic equation by graphing. If exact roots cannot be found, state the consecutive integers between which each root lies.

9. \(2x^2 - 4x = 0 \)
10. \(-x^2 - 5 = -6x \)
11. \(2x^2 + 9 - 8x = 0 \)
12. \(\frac{1}{20}x^2 + \frac{3}{5}x + \frac{1}{2} = 0 \)

Use the table to determine the location of the zeros of the quadratic function.

<table>
<thead>
<tr>
<th>(x)</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>18</td>
<td>5</td>
<td>-4</td>
<td>-9</td>
<td>-10</td>
<td>-7</td>
<td>0</td>
<td>11</td>
</tr>
</tbody>
</table>

Here are some tiny blank grids for you to practice # 1 - 4, 9 - 12
14. The length of a Ping-Pong table is 3 feet more than twice the width. The area of the Ping-Pong table is 90 square feet. What are the dimensions of the Ping-Pong table?

15. The function \(R = -3p^2 + 60p + 1060 \) models the daily revenue for a company that makes DVDs, where \(R \) is the revenue and \(p \) is the price per DVD.

 a. If the company charged $16 per DVD, how much would they make each day?

 b. What is the maximum amount that they can make per day?

ANSWERS

1. \(A.o.S. \ x = -2 \)

 Vertex \((-2, 4)\)

 \(y\)-intercept = 8

 domain: \((-\infty, \infty)\)

 range: \([4, \infty)\)

2. \(A.o.S. \ x = -3 \)

 Vertex \((-3, 7)\)

 \(y\)-intercept = -2

 domain: \((-\infty, \infty)\)

 range: \((-\infty, 7]\)

3. \(A.o.S. \ x = 0 \)

 Vertex \((0, -5)\)

 \(y\)-intercept = -5

 domain: \((-\infty, \infty)\)

 range: \([-5, \infty)\)

4. \(A.o.S. \ x = -1 \)

 Vertex \((-1, 5)\)

 \(y\)-intercept = 2

 domain: \((-\infty, \infty)\)

 range: \((-\infty, 5]\)

5. minimum; -11; at \(x = -2 \)

7. minimum; -25; at \(x = 5 \)

9. \(x = 0, 4 \)

11. No REAL solution

13. \(x \) is between \(-3\) and \(-2\); \(x = 2 \)

14. 6 feet by 15 feet

15. a) $1252 b) $1360