ALGEBRA

Review w/ Answer Key

Quiz 4.1 to 4.3

Graphing in Slope-Intercept Form,
Writing Equations in Slope-Intercept Form,
Writing Equations in Point-Slope Form
4.1 Graphing Equations in Slope-Intercept Form

Write an equation of the line with the given slope and y-intercept.

1. slope: $\frac{1}{4}$, y-intercept: 3

2. slope: $\frac{3}{2}$, y-intercept: -4

3. slope: 1.5, y-intercept: -1

4. slope: -2.5, y-intercept: 3.5

Write an equation of the line shown in each graph.

6.

7.
Graph each equation. Rewrite in slope-intercept form if necessary.

8. \(y = -\frac{1}{2}x + 2 \)

9. \(3y = 2x - 6 \)

Write a linear equation in slope-intercept form to model each situation.

11. A computer technician charges $75 for a consultation plus $35 per hour.

12. The population of Pine Bluff is 6791 and is decreasing at the rate of 7 per year.
4.2 Writing Equations in Slope-Intercept Form

Write an equation of the line that passes through each point with the given slope.

1. \(m = \frac{3}{1} \)

\[y = \frac{3}{1}x \]

2. \(m = -2 \)

\[y = -2x \]

Write an equation of the line that passes through each point with the given slope.

4. \((-5, 4), m = -3\)
5. \((4, 3), m = \frac{1}{2}\)
6. \((1, -5), m = -\frac{3}{2}\)
Write an equation of the line that passes through each pair of points.

7. \((2, -4), (4, -2)\)

8. \((0, 5), (4, 1)\)

Write an equation of the line that passes through each pair of points.

10. \((0, -4), (5, -4)\)

11. \((-4, -2), (4, 0)\)

16. \(x\)-intercept: 2,
 \(y\)-intercept: -5
4.3 Writing Equations in Point-Slope Form

Write an equation of the line in point-slope form that passes through each point with the given slope.

1. \((2, 2), m = -3\)
2. \((1, -6), m = -1\)

3. \((-3, -4), m = 0\)
4. \((1, 3), m = -\frac{3}{4}\)

5. \((-8, 5), m = -\frac{2}{5}\)
6. \((3, -3), m = \frac{1}{3}\)

Determine the slope and point shown in each equation.

12. \(y - 6 = \frac{4}{3}(x - 3)\)
15. \(y - 4 = 2.5(x + 3)\)

11. \(y + 2 = -\frac{3}{4}(x + 1)\)
18. \(y - 3 = -5(x + 12)\)
Write an equation in slope-intercept form.

7. \(y - 11 = 3(x - 2) \) \hspace{1cm} 8. \(y - 10 = -(x - 2) \)

Write an equation in standard form.

16. \(y + 2 = 4(x + 2) \) \hspace{1cm} 17. \(y + 1 = -7(x + 1) \)
ALGEBRA

Review
w/ Answer Key

Quiz 4.1 to 4.3

Graphing in Slope-Intercept Form,
Writing Equations in Slope-Intercept Form,
Writing Equations in Point-Slope Form
4.1 Graphing Equations in Slope-Intercept Form

Write an equation of the line with the given slope and y-intercept.

1. slope: $\frac{1}{4}$, y-intercept: 3
 \[m = \frac{1}{4} \quad b = 3 \]
 \[y = \frac{1}{4}x + 3 \]

2. slope: $\frac{3}{2}$, y-intercept: -4
 \[m = \frac{3}{2} \quad b = -4 \]
 \[y = \frac{3}{2}x - 4 \]

3. slope: 1.5, y-intercept: -1
 \[m = 1.5 \quad b = -1 \]
 \[y = 1.5x - 1 \]

4. slope: -2.5, y-intercept: 3.5
 \[m = -2.5 \quad b = 3.5 \]
 \[y = -2.5x + 3.5 \]

Write an equation of the line shown in each graph.

6.
 \[m = \frac{3}{2} \quad b = 3 \]
 \[y = \frac{3}{2}x + 3 \]

7.
 \[m = -\frac{2}{3} \quad b = -2 \]
 \[y = -\frac{2}{3}x - 2 \]
Graph each equation. Rewrite in slope-intercept form if necessary.

8. \(y = \frac{1}{2}x + 2 \)

9. \(\frac{3y}{3} = \frac{2x - 6}{3} \Rightarrow y = \frac{2}{3}x - 2 \)

Write a linear equation in slope-intercept form to model each situation.

11. A computer technician charges $75 for a consultation plus $35 per hour.

\[y = 35x + 75 \]

12. The population of Pine Bluff is 6791 and is decreasing at the rate of 7 per year.

\[y = -7x + 6791 \]
4.2 Writing Equations in Slope-Intercept Form

Write an equation of the line that passes through each point with the given slope.

1. \(m = 3 \) \(b = -1 \)

 \[y = 3x - 1 \]

2. \(m = -2 \) \(b = -2 \)

 \[y = -2x - 2 \]

Write an equation of the line that passes through each point with the given slope.

4. \((-5, 4), m = -3\)

 \[y = mx + b \]

 \[4 = -3(-5) + b \]

 \[4 = 15 + b \]

 \[15 - 15 = -11 = b \]

 \[y = -3x - 11 \]

5. \((4, 3), m = \frac{1}{2}\)

 \[y = mx + b \]

 \[3 = \frac{1}{2}(4) + b \]

 \[3 = 2 + b \]

 \[2 - 2 = 1 = b \]

 \[y = \frac{1}{2}x + 1 \]

6. \((1, -5), m = -\frac{3}{2}\)

 \[y = mx + b \]

 \[-5 = -\frac{3}{2}(1) + b \]

 \[-5 = -1.5 + b \]

 \[1.5 + 1.5 = 3 = b \]

 \[y = -\frac{3}{2}x - 3.5 \]

 \[\text{or} \]

 \[y = -\frac{3}{2}x - \frac{7}{2} \]
Write an equation of the line that passes through each pair of points.

7. \[m = \frac{\frac{3}{2}}{2} = 1 \quad b = -6 \]
\[y = 1x - 6 \]
\[y = x - 6 \]

8. \[m = -1 \quad y = 5 \]
\[y = -1x + 5 \]
\[y = -x + 5 \]

Write an equation of the line that passes through each pair of points.

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(y_1)</th>
<th>(x_2)</th>
<th>(y_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. (0, -4), (5, -4)</td>
<td>(m = \frac{\frac{-4}{0}}{5 - 0} = \frac{-4}{5})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[m = 0]</td>
<td>[y = mx + b]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[y = 0x + b]</td>
<td>[y = 0(0) + b]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[y = -4]</td>
<td>[-4 = 0 + b]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[b = -4]</td>
<td>[y = -4]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11. \(-4, -2 \), \(4, 0 \) \[m = \frac{\frac{0 - (-2)}{4 - (-4)}} = \frac{2}{8} \]
\[m = \frac{1}{4} \]
\[y = mx + b \]
\[0 = \frac{1}{4}(4) + b \]
\[0 = 1 + b \]
\[-1 = -1 \]
\[-1 = b \]
\[y = \frac{1}{4}x - 1 \]

16. \(x \)-intercept: 2, \(y \)-intercept: -5
\[(2, 0) \quad (0, -5) \]
\[x_1 \quad y_1 \]
\[x_2 \quad y_2 \]
\[m = \frac{\frac{-5}{0}}{-2} = \frac{-5}{-2} = \frac{5}{2} \]
\[y = mx + b \]
\[0 = \frac{5}{2}(2) + b \]
\[0 = 5 + b \]
\[-5 = b \]
\[y = \frac{5}{2}x - 5 \]
4.3 Writing Equations in Point-Slope Form

Write an equation of the line in point-slope form that passes through each point with the given slope.

1. \((2, 2), m = -3\)
 \[y - y_1 = m(x - x_1)\]
 \[y - 2 = -3(x - 2)\]

2. \((1, -6), m = -1\)
 \[y - y_1 = m(x - x_1)\]
 \[y - (-6) = -1(x - 1)\]
 \[y + 6 = - (x - 1)\]

3. \((-3, -4), m = 0\)
 \[y - y_1 = m(x - x_1)\]
 \[y - (-4) = 0(x - (-3))\]
 \[y + 4 = 0\]

4. \((1, 3), m = -\frac{3}{4}\)
 \[y - y_1 = m(x - x_1)\]
 \[y - 3 = -\frac{3}{4}(x - 1)\]

5. \((-8, 5), m = -\frac{2}{5}\)
 \[y - y_1 = m(x - x_1)\]
 \[y - 5 = -\frac{2}{5}(x - (-8))\]
 \[y - 5 = -\frac{2}{5}(x + 8)\]

6. \((3, -3), m = \frac{1}{3}\)
 \[y - y_1 = m(x - x_1)\]
 \[y - (-3) = \frac{1}{3}(x - 3)\]
 \[y + 3 = \frac{1}{3}(x - 3)\]

Determine the slope and point shown in each equation.

12. \(y - 6 = \frac{4}{3}(x - 3)\)
 \[m = \frac{4}{3} \quad (3, 6)\]

15. \(y - 4 = 2.5(x + 3)\)
 \[m = 2.5 \quad (-3, 4)\]

11. \(y + 2 = -\frac{3}{4}(x + 1)\)
 \[m = -\frac{3}{4} \quad (-1, -2)\]

18. \(y - 3 = -5(x + 12)\)
 \[m = -5 \quad (-12, 3)\]
Write an equation in slope-intercept form.

7. \(y - 11 = 3(x - 2) \)
 \[
 \begin{align*}
 &\text{1. Distribute} \quad y - 11 = 3x - 6 \\
 &\text{2. Isolate the } y \quad y = 3x + 5
 \end{align*}
 \]

8. \(y - 10 = -(x - 2) \)
 \[
 \begin{align*}
 &\text{1. Distribute} \quad y - 10 = -x + 2 \\
 &\text{2. Isolate the } y \quad y = -x + 12
 \end{align*}
 \]

Write an equation in standard form.

16. \(y + 2 = 4(x + 2) \)
 \[
 \begin{align*}
 &\text{1. Distribute} \quad y + 2 = 4x + 8 \\
 &\text{2. Isolate the } y \quad y = 4x + 6 \\
 &\text{3. Move the } x \quad -4x - y = 6 \\
 &\text{4. Multiply by negative 1 because the } A \text{ is negative} \quad -4x + y = 6
 \end{align*}
 \]

17. \(y + 1 = -7(x + 1) \)
 \[
 \begin{align*}
 &\text{1. Distribute} \quad y + 1 = -7x - 7 \\
 &\text{2. Isolate the } y \quad y = -7x - 8 \\
 &\text{3. Move the } x \quad +7x + y = -8 \\
 &\text{4. Same steps} \quad 7x + y = -8 \text{ done!}
 \end{align*}
 \]