Then

In Chapter 5, you graphed quadratic functions and solved quadratic equations.

Now

In Chapter 6, you will:

- Add, subtract, multiply, divide, and factor polynomials.
- Analyze and graph polynomial functions.
- Evaluate polynomial functions and solve polynomial equations.
- Find factors and zeros of polynomial functions.

Why?

TRANSPORTATION Polynomial functions can be used to determine bus schedules, highway capacity, traffic patterns, average fuel costs, and the prices of new and used cars.
Get Ready for the Chapter

Diagnose Readiness | You have two options for checking prerequisite skills.

1 Textbook Option Take the Quick Check below. Refer to the Quick Review for help.

QuickCheck

Rewrite each difference as a sum. (Lesson 1-2)
1.
2.
3.
4.
5. PARTIES Twenty people attended a going away party for Zach. The guests left in groups of 2. By 9:00, x groups had left. Rewrite the number of guests remaining at 9:00 as a sum.

Use the Distributive Property to rewrite each expression without parentheses. (Lesson 1-2)
6.
7.
8.
9.
10. MONEY Mr. Chávez is buying pizza and soda for the members of the science club. A slice of pizza costs $2.25, and a soda costs $1.25. Write an expression to represent the amount that Mr. Chávez will spend on 15 students. Evaluate the expression by using the Distributive Property.

QuickReview

Example 1
Rewrite \(2xy - 3 - z\) as a sum.
\[
2xy - 3 - z = 2xy + (-3) + (-z)
\]
Rewrite using addition.

Example 2
Use the Distributive Property to rewrite \(-3(a + b - c)\).
\[
-3(a + b - c) = -3a + (-3)b + (-3)c
\]
Distributive Property
Simplify.

Example 3
Solve \(2x^2 + 8x + 1 = 0\).
\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]
Quadratic Formula
\[
= \frac{-8 \pm \sqrt{8^2 - 4(2)(1)}}{2(2)}
\]
Simplify.
\[
= \frac{-8 \pm \sqrt{56}}{4}
\]
The exact solutions are \(-2 + \frac{\sqrt{14}}{2}\) and \(-2 - \frac{\sqrt{14}}{2}\).
The approximate solutions are \(-0.13\) and \(-3.87\).

2 Online Option Take an online self-check Chapter Readiness Quiz at connectED.mcgraw-hill.com.
You will learn several new concepts, skills, and vocabulary terms as you study Chapter 6. To get ready, identify important terms and organize your resources. You may wish to refer to Chapter 0 to review prerequisite skills.

Foldable Organizer

Polynomials and Polynomial Functions Make this Foldable to help you organize your Chapter 6 notes about polynomials and polynomial functions. Begin with one sheet of \(8\frac{1}{2}\) by 14” paper.

1. **Fold** a 2” tab along the bottom of a long side.
2. **Fold** along the width into thirds.
3. **Staple** the outer edges of the tab.
4. **Label** the tabs *Polynomials*, *Polynomial Functions and Graphs*, and *Solving Polynomial Equations*.

Vocabularies

English

- simplify
- degree of a polynomial
- synthetic division
- polynomial in one variable
- leading coefficient
- polynomial function
- power function
- end behavior
- relative maximum
- relative minimum
- extrema
- turning points
- prime polynomials
- quadratic form
- synthetic substitution
- depressed polynomial

Español

- reducir
- grado de un polinomio
- división sintética
- polinomio de una variable
- coeficiente líder
- función polinomial
- función potencia
- comportamiento final
- máximo relativo
- mínimo relativo
- extrema
- momentos cruciales
- polinomios primers
- forma de ecuación cuadrática
- sustitución sintética
- polinomio reducido

Review Vocabulary

- factoring
- function

- a relation in which each element of the domain is paired with exactly one element in the range

- a monomial or sum of monomials
Operations with Polynomials

Multiply and Divide Monomials

To **simplify** an expression containing powers means to rewrite the expression without parentheses or negative exponents. Negative exponents are a way of expressing the multiplicative inverse of a number. The following table summarizes the properties of exponents.

<table>
<thead>
<tr>
<th>Property</th>
<th>Definition</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product of Powers</td>
<td>$x^a \cdot x^b = x^{a+b}$</td>
<td>$3^2 \cdot 3^4 = 3^6$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$p^2 \cdot p^9 = p^{11}$</td>
</tr>
<tr>
<td>Quotient of Powers</td>
<td>$\frac{x^a}{x^b} = x^{a-b}$</td>
<td>$\frac{9^5}{9^2} = 9^{5-2}$ or 9^3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\frac{b^6}{b^4} = b^{6-4}$ or b^2</td>
</tr>
<tr>
<td>Negative Exponent</td>
<td>$x^{-a} = \frac{1}{x^a}$ and $\frac{1}{x^{-a}} = x^a$, $x \neq 0$</td>
<td>$\frac{3^{-5}}{3^5} = \frac{1}{3^{5+5}}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\frac{1}{b^{-7}} = b^7$</td>
</tr>
<tr>
<td>Power of a Power</td>
<td>$(x^a)^b = x^{ab}$</td>
<td>$(3^2)^3 = 3^{2\cdot3}$ or 3^6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(d^2)^4 = d^{2\cdot4}$ or d^8</td>
</tr>
<tr>
<td>Power of a Product</td>
<td>$(xy)^a = x^a y^a$</td>
<td>$(2k)^4 = 2^4 k^4$ or $16k^4$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(ab)^3 = a^3 b^3$</td>
</tr>
<tr>
<td>Power of a Quotient</td>
<td>$\left(\frac{x}{y}\right)^a = \frac{x^a}{y^a}$, $y \neq 0$, and</td>
<td>$\left(\frac{x}{y}\right)^2 = \frac{x^2}{y^2}$</td>
</tr>
<tr>
<td></td>
<td>$\left(\frac{x}{y}\right)^{-a} = \left(\frac{y}{x}\right)^a$ or $\frac{x^a}{y^a}$, $x \neq 0$, $y \neq 0$</td>
<td>$\left(\frac{a}{b}\right)^{-5} = \frac{b^5}{a^5}$</td>
</tr>
<tr>
<td>Zero Power</td>
<td>$x^0 = 1$, $x \neq 0$</td>
<td>$7^0 = 1$</td>
</tr>
</tbody>
</table>

Recall that a **monomial** is a number, a variable, or an expression that is the product of one or more variables with nonnegative integer exponents.
When simplifying a monomial, check to be sure that it has been simplified fully.

Key Concept: Simplifying Monomials

A monomial expression is in simplified form when:
- there are no powers of powers,
- each base appears exactly once,
- all fractions are in simplest form, and
- there are no negative exponents.

Example 1: Simplify Expressions

Simplify each expression. Assume that no variable equals 0.

a. \((2a^{-2})(3a^3b^2)(c^{-2})\)

\[
(2a^{-2})(3a^3b^2)(c^{-2}) =
\begin{align*}
2 \cdot \left(\frac{1}{a^2}\right) & \cdot
(3 \cdot a \cdot a \cdot a \cdot b \cdot b) \cdot
\left(\frac{1}{c^2}\right) \\
= & \left(\frac{2}{a^2}\right) \cdot (3 \cdot a \cdot a \cdot a \cdot b \cdot b) \cdot
\left(\frac{1}{c^2}\right) \\
= & \left(\frac{2}{a^2}\right) \cdot (3 \cdot a \cdot a \cdot a \cdot b \cdot b) \cdot
\left(\frac{1}{c^2}\right) \\
= & \frac{6ab^2}{c^2}
\end{align*}
\]

b. \(\frac{q^{2+r^4}}{q^{7+r^3}}\)

\[
\frac{q^{2+r^4}}{q^{7+r^3}} = q^{2-7} \cdot r^{4-3} \quad \text{Quotient of powers}
\]

\[
= q^{-5} r \\
= \frac{r^5}{q^5} \quad \text{Simplify}
\]

c. \(\left(-\frac{2a^4}{b^2}\right)^3\)

\[
\left(-\frac{2a^4}{b^2}\right)^3 = \left(-\frac{2a^4}{b^2}\right)^3 \\
= \left(-2a^4\right)^3 \\
= \left(-2\right)^3(a^4)^3 \\
= \frac{-8a^{12}}{b^6} \quad \text{Power of a power}
\]

Guided Practice

1A. \((2x^{-3}y^3)(-7x^5y^{-6})\)

1B. \(\frac{15c^5d^3}{-3c^2d^7}\)

1C. \(\left(\frac{a}{4}\right)^{-3}\)

1D. \((-2x^3y^2)^5\)
Operations With Polynomials

The degree of a polynomial is the degree of the monomial with the greatest degree. For example, the degree of the polynomial $x^2 + 4x + 58$ is 2.

Example 2 Degree of a Polynomial

Determine whether each expression is a polynomial. If it is a polynomial, state the degree of the polynomial.

a. $\frac{1}{4}x^4y^3 - 8x^5$

 This expression is a polynomial because each term is a monomial. The degree of the first term is $4 + 3 = 7$, and the degree of the second term is 5. The degree of the polynomial is 7.

b. $\sqrt{x} + x + 4$

 This expression is not a polynomial because \sqrt{x} is not a monomial.

c. $x^{-3} + 2x^{-2} + 6$

 This expression is not a polynomial because x^{-3} and x^{-2} are not monomials:

 $x^{-3} = \frac{1}{x^3}$ and $x^{-2} = \frac{1}{x^2}$. Monomials cannot contain variables in the denominator.

Guided Practice

2A. $\frac{x}{y} + 3x^2$
2B. $x^5y + 9x^4y^3 - 2xy$

You can simplify a polynomial just like you simplify a monomial. Perform the operations indicated, and combine like terms.

Example 3 Simplify Polynomial Expressions

Simplify each expression.

a. $(4x^2 - 5x + 6) - (2x^2 + 3x - 1)$

 Remove parentheses, and group like terms together.

 $(4x^2 - 5x + 6) - (2x^2 + 3x - 1) = 4x^2 - 5x + 6 - 2x^2 - 3x + 1$

 Distribute the -1.

 $= (4x^2 - 2x^2) + (-5x - 3x) + (6 + 1)$

 Group like terms.

 $= 2x^2 - 8x + 7$

 Combine like terms.

b. $(6x^2 - 7x + 8) + (-4x^2 + 9x - 5)$

 Align like terms vertically and add.

 $6x^2 - 7x + 8$

 $(+)$ $-4x^2 + 9x - 5$

 $2x^2 + 2x + 3$

Guided Practice

3A. $(-x^2 - 3x + 4) - (x^2 + 2x + 5)$
3B. $(3x^2 - 6) + (-x + 1)$
You can use the Distributive Property to multiply polynomials.

Example 4 Simplify by Using the Distributive Property

Find $3x(2x^2 - 4x + 6)$.

$$3x(2x^2 - 4x + 6) = 3x(2x^2) + 3x(-4x) + 3x(6)$$

Distributive Property

$$= 6x^3 - 12x^2 + 18x$$

Multiply the monomials.

Guided Practice

Find each product.

4A. $\frac{4}{3}x^3(6x^2 + 9x - 12)$

4B. $-2a(-3a^2 - 11a + 20)$

Polynomials can be used to represent real-world situations.

Real-World Example 5 Write a Polynomial Expression

DRIVING The U.S. Department of Transportation limits the time a truck driver can work between periods of rest to ten hours. For the first part of his shift, Tom drives at a speed of 60 miles per hour, and for the second part of the shift, he drives at a speed of 70 miles per hour. Write a polynomial to represent the distance driven.

<table>
<thead>
<tr>
<th>Words</th>
<th>60 mph for some time and 70 mph for the rest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>Let $x =$ the number of hours he drives at 60 miles per hour.</td>
</tr>
<tr>
<td>Expression</td>
<td>$60x + 70(10 - x)$</td>
</tr>
</tbody>
</table>

$= 60x + 700 - 70x$

$= 700 - 10x$

Combine like terms.

The polynomial is $700 - 10x$.

Guided Practice

5. Paul has $900 to invest in a savings account that has an annual interest rate of 1.8%, and a money market account that pays 4.2% per year. Write a polynomial for the interest he will earn in one year if he invests x dollars in the savings account.

Example 6 Multiply Polynomials

Find $(n^2 + 4n - 6)(n + 2)$.

$$(n^2 + 4n - 6)(n + 2)$$

$$= n^2(n + 2) + 4n(n + 2) + (-6)(n + 2)$$

Distributive Property

$$= n^2 \cdot n + n^2 \cdot 2 + 4n \cdot n + 4n \cdot 2 + (-6) \cdot n + (-6) \cdot 2$$

Distributive Property

$$= n^3 + 2n^2 + 4n^2 + 8n - 6n - 12$$

Multiply monomials.

$$= n^3 + 6n^2 + 2n - 12$$

Combine like terms.

Guided Practice

Find each product.

6A. $(x^2 + 4x + 16)(x - 4)$

6B. $(2x^2 - 4x + 5)(3x - 1)$
Check Your Understanding

Example 1
Simplify. Assume that no variable equals 0.

1. \((2a^3b^{-2})(-4a^2b^4) \)
2. \(\frac{12x^4y^2}{2xy^5} \)
3. \(\left(\frac{2a^2}{3b} \right)^3 \)
4. \((6x^5y^{-4})^3 \)

Example 2
Determine whether each expression is a polynomial. If it is a polynomial, state the degree of the polynomial.

5. \(3x + 4y \)
6. \(\frac{1}{2}x^2 - 7y \)
7. \(x^2 + \sqrt{x} \)
8. \(\frac{ab^3 - 1}{az^4 + 3} \)

Examples 3–4, and 6
Simplify.

9. \((x^2 - 5x + 2) - (3x^2 + x - 1) \)
10. \((3a + 4b) + (6a - 6b) \)
11. \(2a(4b + 5) \)
12. \(3x^2(2xy - 3xy^2 + 4x^2y^3) \)
13. \((n - 9)(n + 7) \)
14. \((a + 4)(a - 6) \)

Example 5
15. **EXERCISE** Tara exercises 75 minutes a day. She does cardio, which burns an average of 10 Calories a minute, and weight training, which burns an average of 7.5 Calories a minute. Write a polynomial to represent the amount of Calories Tara burns in one day if she does \(x \) minutes of weight training.

Practice and Problem Solving

Example 1
Simplify. Assume that no variable equals 0.

16. \((5x^3y^{-5})(4xy^3) \)
17. \((-2b^3c)(4b^2c^2) \)
18. \(\frac{a^3n^7}{an^4} \)
19. \(\frac{-y^3z^5}{y^2z^5} \)
20. \(\frac{-7x^5y^6z^4}{21x^7y^9z^2} \)
21. \(\frac{9a^7b^5c^3}{18a^5b^3c^3} \)
22. \((n^5)^4 \)
23. \((z^5)^6 \)

Example 2
Determine whether each expression is a polynomial. If it is a polynomial, state the degree of the polynomial.

24. \(2x^2 - 3x + 5 \)
25. \(a^3 - 11 \)
26. \(\frac{5np}{n^2} - \frac{2m}{h} \)
27. \(\sqrt{m - 7} \)

Examples 3–4, and 6
Simplify.

28. \((6a^2 + 5a + 10) - (4a^2 + 6a + 12) \)
29. \((7b^2 + 6b - 7) - (4b^2 - 2) \)
30. \(3p(np - z) \)
31. \(4x(2x^2 + y) \)
32. \((x - y)(x^2 + 2xy + y^2) \)
33. \((a + b)(a^3 - 3ab - b^2) \)
34. \(4(a^2 + 5a - 6) - 3(2a^3 + 4a - 5) \)
35. \(5c(2c^2 - 3c + 4) + 2c(7c - 8) \)
36. \(5xy(2x - y) + 6y^2(x^2 + 6) \)
37. \(3ab(4a - 5b) + 4b^2(2a^2 + 1) \)
38. \((x - y)(x + y)(2x + y) \)
39. \((a + b)(2a + 3b)(2x - y) \)

Example 5
40. **PAINTING** Connor has hired two painters to paint his house. The first painter charges $12 an hour and the second painter charges $11 an hour. It will take 15 hours of labor to paint the house.

a. Write a polynomial to represent the total cost of the job if the first painter does \(x \) hours of the labor.

b. Write a polynomial to represent the total cost of the job if the second painter does \(y \) hours of the labor.
Simplify. Assume that no variable equals 0.

41. \(\frac{8x^2y^3}{24x^9y^7} \)
42. \(\frac{12a^3b^5}{4a^6b^3} \)
43. \(\frac{4x^{-2}y^3}{xy^{-4}} \)
44. \(\frac{5a^{-7}b^2}{ab^{-6}} \)

45. \((a^2b^3)(ab)^{-2} \)
46. \((-3x^3y)^2(4xy^2) \)
47. \(\frac{3c^2d(2c^3d^5)}{15c^d^2} \)
48. \(-\frac{10g^6h^9(3^2h^3)}{30g^3h^3} \)
49. \(\frac{5x^4y^2(2x^5y^6)}{20x^3y^3} \)
50. \(-\frac{12n^7p^5(n^2p)}{36n^6p^7} \)

51. ASTRONOMY Refer to the beginning of the lesson.

 a. How long does it take light from Andromeda to reach Earth?
 b. The average distance from the Sun to Mars is approximately \(2.28 \times 10^{11} \) meters. How long does it take light from the Sun to reach Mars?

Simplify.

52. \(\frac{1}{48^2}(8x + 12h - 16gh^2) \)
53. \(\frac{1}{3}x^3(6n - 9p + 18np^4) \)
54. \(x^{-2}(x^4 - 3x^3 + x^{-1}) \)
55. \(a^{-3}b^2(ba^3 + b^{-1}a^2 + b^{-2}a) \)
56. \((g^3 - h)(g^3 + h) \)
57. \((n^2 - 7)(2m^3 + 4) \)
58. \((2x - 2y)^3 \)
59. \((4n - 5)^3 \)
60. \((3z - 2)^3 \)

51. EDUCATION The polynomials \(0.108x^2 - 0.876x + 474.1 \) and \(0.047x^2 + 9.694x + 361.7 \) approximate the number of bachelor’s degrees, in thousands, earned by males and females, respectively, where \(x \) is the number of years after 1971.

 a. Find the polynomial that represents the total number of bachelor’s degrees (in thousands) earned by both men and women.
 b. Find the polynomial that represents the difference between bachelor’s degrees earned by men and by women.

62. If \(5^k + 7 = 5^{2k-3} \), what is the value of \(k \)?
63. What value of \(k \) makes \(q^{41} = q^{4k} \cdot q^5 \) true?

64. MULTIPLE REPRESENTATIONS Use the model at the right that represents the product of \(x + 3 \) and \(x + 4 \).

 a. Geometric The area of each rectangle is the product of its length and width. Use the model to find the product of \(x + 3 \) and \(x + 4 \).
 b. Algebraic Use FOIL to find the product of \(x + 3 \) and \(x + 4 \).
 c. Verbal Explain how each term of the product is represented in the model.

H.O.T. Problems Use Higher-Order Thinking Skills

65. PROOF Show how the property of negative exponents can be proven using the Quotient of Powers Property and the Zero Power Property.

66. CHALLENGE What happens to the quantity of \(x^{-y} \) as \(y \) increases, for \(y > 0 \) and \(x > 1 \)?

67. REASONING Explain why the expression \(0^{-2} \) is undefined.

68. OPEN ENDED Write three different expressions that are equivalent to \(x^{12} \).

69. WRITING IN MATH Explain why properties of exponents are useful in astronomy. Include an explanation of how to find the amount of time it takes for light from a source to reach a planet.
70. SHORT RESPONSE Simplify \(\frac{(2x^2)^3}{12x^4} \).

71. STATISTICS For the numbers \(a, b, \) and \(c, \) the average (arithmetic mean) is twice the median. If \(a = 0 \) and \(a < b < c, \) what is the value of \(\frac{c}{b}? \)
- A 2
- B 3

72. Which is not a factor of \(x^3 - x^2 - 2x? \)
- F \(x \)
- G \(x + 1 \)
- H \(x - 1 \)
- J \(x - 2 \)

73. SAT/ACT The expression \((-6 + i)^2\) is equivalent to which of the following expressions?
- A 35
- B \(-12i\)
- C \(-12 + i\)
- D \(35 - 12i\)
- E \(37 - 12i\)

Spiral Review

Solve each inequality algebraically. (Lesson 5-8)

74. \(x^2 - 6x \leq 16 \)
75. \(x^2 + 3x > 40 \)
76. \(2x^2 - 12 \leq -5x \)

Graph each function. (Lesson 5-7)

77. \(y = 3(x - 2)^2 - 4 \)
78. \(y = -2(x + 4)^2 + 3 \)
79. \(y = \frac{1}{3}(x + 1)^2 + 6 \)

80. BASEBALL A baseball player hits a high pop-up with an initial upward velocity of 30 meters per second, 1.4 meters above the ground. The height \(h(t) \) of the ball in meters \(t \) seconds after being hit is modeled by \(h(t) = -4.9t^2 + 30t + 1.4. \) How long does an opposing player have to get under the ball if he catches it 1.7 meters above the ground? Does your answer seem reasonable? Explain. (Lesson 5-3)

Evaluate each determinant. (Lesson 4-5)

81. \[
\begin{vmatrix}
3 & 0 & -2 \\
-1 & 4 & 3 \\
5 & -2 & -1 \\
\end{vmatrix}
\]
82. \[
\begin{vmatrix}
-2 & -4 & -6 \\
0 & 6 & -5 \\
-1 & 3 & -1 \\
\end{vmatrix}
\]
83. \[
\begin{vmatrix}
-3 & -1 & -2 \\
-2 & 3 & 4 \\
6 & 1 & 0 \\
\end{vmatrix}
\]

84. FINANCIAL LITERACY A couple is planning to invest $15,000 in certificates of deposit (CDs). For tax purposes, they want their total interest the first year to be $800. They want to put $1000 more in a 2-year CD than in a 1-year CD and then invest the rest in a 3-year CD. How much should they invest in each type of CD? (Lesson 3-5)

Find the slope of the line that passes through each pair of points. (Lesson 2-3)

85. \((6, -2)\) and \((-2, -9)\)
86. \((-4, -1)\) and \((3, 8)\)
87. \((3, 0)\) and \((-7, -5)\)
88. \((\frac{1}{2}, \frac{2}{3})\) and \((\frac{1}{4}, \frac{1}{3})\)
89. \((\frac{2}{5}, \frac{1}{4})\) and \((\frac{1}{10}, \frac{1}{12})\)
90. \((-4.5, 2.5)\) and \((-3, -1)\)

Skills Review

Factor each polynomial. (Lesson 0-3)

91. \(12ax^3 + 20bx^2 + 32cx\)
92. \(x^2 + 2x + 6 + 3x\)
93. \(12y^2 + 9y + 8y + 6\)
94. \(2my + 7x + 7m + 2xy\)
95. \(8ax - 6x - 12a + 9\)
96. \(10x^2 - 14xy - 15x + 21y\)
Real-world problems often involve units of measure. Performing operations with units is called **dimensional analysis** or **unit analysis**. You can use dimensional analysis to convert units or to perform calculations.

Example

A car is traveling at 65 miles per hour. How fast is the car traveling in meters per second?

You want to find the speed in meters per second, so you need to change the unit of distance from miles to meters and the unit of time from hours to seconds. To make the conversion, use fractions that you can multiply.

Step 1 Change the units of length from miles to meters.

Use the relationships of miles to feet and feet to meters.

\[
\begin{align*}
65 \text{ miles} & \cdot \frac{5280 \text{ feet}}{1 \text{ mile}} \cdot \frac{1 \text{ meter}}{3.3 \text{ feet}} \\
1 \text{ hour} & \cdot \frac{1 \text{ mile}}{1 \text{ mile}}
\end{align*}
\]

Step 2 Change the units of time from hours to seconds.

Write fractions relating hours to minutes and minutes to seconds.

\[
\begin{align*}
65 \text{ miles} & \cdot \frac{5280 \text{ feet}}{1 \text{ mile}} \cdot \frac{1 \text{ meter}}{3.3 \text{ feet}} \cdot \frac{1 \text{ hour}}{60 \text{ minutes}} \\
1 \text{ hour} & \cdot \frac{1 \text{ minute}}{60 \text{ seconds}}
\end{align*}
\]

Step 3 Simplify and check by canceling the units.

\[
\begin{align*}
\frac{65 \text{ miles}}{1 \text{ hour}} & \cdot \frac{5280 \text{ feet}}{1 \text{ mile}} \cdot \frac{1 \text{ meter}}{3.3 \text{ feet}} \cdot \frac{1 \text{ hour}}{60 \text{ minutes}} \\
& = \frac{65 \cdot 5280}{3.3 \cdot 60 \cdot 60} \text{ m/s} \\
& \approx 28.9 \text{ m/s}
\end{align*}
\]

So, 65 miles per hour is about 28.9 meters per second. This answer is reasonable because the final units are m/s, not m/hr, ft/s, or mi/hr.

Exercises

Solve each problem by using dimensional analysis. Include the appropriate units with your answer.

1. A zebra can run 40 miles per hour. How far can a zebra run in 3 minutes?

2. A cyclist traveled 43.2 miles at an average speed of 12 miles per hour. How long did the cyclist ride?

3. If you are going 50 miles per hour, how many feet per second are you traveling?

4. The equation \(d = \frac{1}{2}(9.8 \text{ m/s}^2)(3.5 \text{ s})^2 \) represents the distance \(d \) that a ball falls 3.5 seconds after it is dropped from a tower. Find the distance.

5. **WRITING IN MATH** Explain how dimensional analysis can be useful in checking the reasonableness of your answer.
There is a page from a textbook discussing the process of dividing polynomials. The page includes text, examples, and explanations on how to divide polynomials by monomials and by other polynomials using long division and synthetic division. It also discusses the division algorithm and provides practice problems for students to solve. The text is laid out in a structured format with headings, examples, and subheadings, which make it easy to follow and understand. The page also includes a visual representation of a book jacket to help illustrate the concept of dividing polynomials.
Just as with the division of whole numbers, the division of two polynomials may result in a quotient with a remainder. Remember that \(11 \div 3 = 3 + \text{R}2\), which is often written as \(3 \frac{2}{3}\). The result of a division of polynomials with a remainder can be written in a similar manner.

Test Example 3

Which expression is equal to \((a^2 + 7a - 11)(3 - a)^{-1}\)?

- A \(a + 10 - \frac{19}{3 - a}\)
- B \(-a + 10\)
- C \(-a - 10 + \frac{19}{3 - a}\)
- D \(-a - 10 - \frac{19}{3 - a}\)

Read the Test Item

Since the second factor has an exponent of \(-1\), this is a division problem.

\[
(a^2 + 7a - 11)(3 - a)^{-1} = \frac{a^2 + 7a - 11}{3 - a}
\]

Solve the Test Item

\[
\begin{align*}
-a - 10 & \\
\frac{-a + 3}{a^2 + 7a - 11} & \\
\frac{-a + 3}{(-a)^2 - 3a} & \\
& = a^2 - 3a \\
\frac{10a - 11}{7a - (-3a)} & \\
& = 10a \\
\frac{(-10a - 30)}{-10(-a + 3)} & \\
& = 10a - 30 \\
& = -11 - (-30) = 19
\end{align*}
\]

The quotient is \(-a - 10\), and the remainder is 19. Therefore, \((a^2 + 7a - 11)(3 - a)^{-1} = -a - 10 + \frac{19}{3 - a}\). The answer is C.

Guided Practice

3. Which expression is equal to \((r^2 + 5r + 7)(1 - r)^{-1}\)?

- F \(-r - 6 + \frac{13}{1 - r}\)
- G \(r + 6\)
- H \(r - 6 + \frac{13}{1 - r}\)
- J \(r + 6 - \frac{13}{1 - r}\)

Synthetic Division

Synthetic division is a simpler process for dividing a polynomial by a binomial. Suppose you want to divide \(2x^3 - 13x^2 + 26x - 24\) by \(x - 4\) using long division. Compare the coefficients in this division with those in Example 4.

\[
\begin{align*}
2x^3 - 5x + 6 & \\
x - 4 & \\
\frac{2x^3 - 13x^2 + 26x - 24}{2x^3 - 8x^2} & \\
& -5x^2 + 26x \\
& -5x^2 + 20x \\
& 6x - 24 \\
& -6x - 24 \\
& 0
\end{align*}
\]

When the polynomial in the dividend is missing a term, a zero must be used to represent the missing term. So, with a dividend of \(2x^3 - 4x^2 + 6\), a 0 will be used as a placeholder for the \(x\)-term.
Key Concept Synthetic Division

Step 1 Write the coefficients of the dividend so that the degrees of the terms are in descending order. Write the constant r of the divisor $x - r$ in the box. Bring the first coefficient down.

Step 2 Multiply the first coefficient by r, and write the product under the second coefficient.

Step 3 Add the product and the second coefficient.

Step 4 Repeat Steps 2 and 3 until you reach a sum in the last column. The numbers along the bottom row are the coefficients of the quotient. The power of the first term is one less than the degree of the dividend. The final number is the remainder.

Example 4 Synthetic Division

Use synthetic division to find $(2x^3 - 13x^2 + 26x - 24) ÷ (x - 4)$.

Step 1 Write the coefficients of the dividend. Write the constant r in the box. In this case, $r = 4$. Bring the first coefficient, 2, down.

<table>
<thead>
<tr>
<th>4</th>
<th>2</th>
<th>-13</th>
<th>26</th>
<th>-24</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 2 Multiply the first coefficient by r: $2 \cdot 4 = 8$. Write the product under the second coefficient.

<table>
<thead>
<tr>
<th>4</th>
<th>2</th>
<th>-13</th>
<th>26</th>
<th>-24</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

Step 3 Add the product and the second coefficient: $-13 + 8 = -5$.

<table>
<thead>
<tr>
<th>4</th>
<th>2</th>
<th>-13</th>
<th>26</th>
<th>-24</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>-5</td>
<td>8</td>
</tr>
</tbody>
</table>

Step 4 Multiply the sum, -5, by r: $-5 \cdot 4 = -20$. Write the product under the next coefficient, and add: $26 + (-20) = 6$. Multiply the sum, 6, by r: $6 \cdot 4 = 24$. Write the product under the next coefficient and add: $-24 + 24 = 0$.

<table>
<thead>
<tr>
<th>4</th>
<th>2</th>
<th>-13</th>
<th>26</th>
<th>-24</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>-13</td>
<td>26</td>
<td>-24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>-20</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-5</td>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>

CHECK Multiply the quotient by the divisor. The answer should be the dividend.

$$
egin{align*}
2x^2 - 5x + 6 \\
\text{(x)} & \quad x - 4 \\
-8x^2 + 20x - 24 \\
2x^3 - 13x^2 + 26x - 24
\end{align*}
$$

The quotient is $2x^2 - 5x + 6$. The remainder is 0.

Guided Practice

Use synthetic division to find each quotient.

4A. $(2x^3 + 3x^2 - 4x + 15) ÷ (x + 3)$

4B. $(3x^3 - 8x^2 + 11x - 14) ÷ (x - 2)$

4C. $(4a^4 + 2a^2 - 4a + 12) ÷ (a + 2)$

4D. $(6b^4 - 8b^3 + 12b - 14) ÷ (b - 2)$
To use synthetic division, the divisor must be of the form \(x - r \). If the coefficient of \(x \) in a divisor is not 1, you can rewrite the division expression so that you can use synthetic division.

Example 5 Divisor with First Coefficient Other than 1

Use synthetic division to find \((3x^4 - 5x^3 + x^2 + 7x) \div (3x + 1)\).

\[
\begin{align*}
 \frac{3x^4 - 5x^3 + x^2 + 7x}{3x + 1} &= \frac{(3x^4 - 5x^3 + x^2 + 7x) \div 3}{(3x + 1) \div 3} \\
 &= \frac{x^4 - \frac{5}{3}x^3 + \frac{1}{3}x^2 + \frac{7}{3}x}{x + \frac{1}{3}} \\
\end{align*}
\]

Since the numerator does not have a constant term, use a coefficient of 0 for the constant term.

\[
x - r = x + \frac{1}{3} \text{ so } r = -\frac{1}{3} \quad \rightarrow \quad \begin{array}{c|cccc}
1 & -\frac{5}{3} & \frac{1}{3} & \frac{7}{3} & 0 \\
\hline
& -1 & 2 & -1 & -2 \\
\end{array}
\]

\[
\begin{array}{cccc|c}
1 & -2 & 1 & 2 & -\frac{2}{3} \\
\end{array}
\]

The result is \(x^3 - 2x^2 + x + 2 - \frac{2}{3x + 1} \). Now simplify the fraction.

\[
\frac{\frac{2}{3}}{x + \frac{1}{3}} = \frac{2}{3} \div \left(x + \frac{1}{3}\right) \\
= \frac{2}{3} \div \frac{3x + 1}{3} \\
= \frac{2}{3} \cdot \frac{3}{3x + 1} \\
= \frac{2}{3x + 1} \\
\]

The solution is \(x^3 - 2x^2 + x + 2 - \frac{2}{3x + 1} \).

CHECK Divide using long division

\[
\begin{align*}
 &\phantom{1\text{ }3x + 1\text{ }3x^4 - 5x^3 + x^2 + 7x \\
 &\phantom{1\text{ }3x + 1\text{ }(-) 3x^4 + x^3} -6x^3 + x^2 \\
 &\phantom{1\text{ }3x + 1\text{ }(-) -6x^3 - 2x^2} 3x^2 + 7x \\
 &\phantom{1\text{ }3x + 1\text{ }(-) 3x^2 + x} 6x + 0 \\
 &\phantom{1\text{ }3x + 1\text{ }(-) 6x + 2} -2 \\
\end{align*}
\]

The result is \(x^3 - 2x^2 + x + 2 - \frac{2}{3x + 1} \).
Check Your Understanding

Example 5

Simplify.

8. \((10x^2 + 15x + 20) \div (5x + 5) \)

9. \((18a^2 + 6a + 9) \div (3a - 2) \)

10. \(\frac{12b^2 + 23b + 15}{3b + 8} \)

11. \(\frac{27y^2 + 27y - 30}{9y - 6} \)

Extra Practice begins on page 947.

Practice and Problem Solving

1. \(\frac{4xy - 2xy + 2x^2y}{xy} \)

2. \((3a^2b - 6ab + 5ab^2)(ab)^{-1} \)

3. \((x^2 - 6x - 20) \div (x + 2) \)

4. \((2a^2 - 4a - 8) \div (a + 1) \)

5. \((3z^4 - 6z^3 - 9z^2 + 3z - 6) \div (z + 3) \)

6. \((y^5 - 3y^2 - 20) \div (y - 2) \)

Example 3

7. **MULTIPLE CHOICE** Which expression is equal to \((x^2 + 3x - 9)(4 - x)^{-1} \)?

 A. \(-x - 7 + \frac{19}{4 - x}\)

 B. \(-x - 7\)

 C. \(x + 7 - \frac{19}{4 - x}\)

 D. \(-x - 7 - \frac{19}{4 - x}\)

18. **ENERGY** Compact fluorescent light (CFL) bulbs reduce energy waste. The amount of energy waste that is reduced each day in a certain community can be estimated by \(-b^2 + 8b\), where \(b\) is the number of bulbs. Divide by \(b\) to find the average amount of energy saved per CFL bulb.

19. **BAKING** The number of cookies produced in a factory each day can be estimated by \(-w^2 + 16w + 1000\), where \(w\) is the number of workers. Divide by \(w\) to find the average number of cookies produced per worker.

Example 1

Simplify.

12. \(\frac{24a^2h^2 - 16a^2b^3}{8ab} \)

13. \(\frac{5x^2y - 10xy + 15x^2}{5xy} \)

14. \(\frac{7g^4h^2 + 3g^2h^2 - 2g^4h^3}{gh} \)

15. \(\frac{4a^2b - 6ab + 2ab^2}{2ab} \)

16. \(\frac{16cd^4 - 24c^2d^2}{4c^2d^2} \)

17. \(\frac{9n^3p^3 - 18n^2p^2 + 21n^2p^3}{3n^2p^2} \)

18. **ENERGY** Compact fluorescent light (CFL) bulbs reduce energy waste. The amount of energy waste that is reduced each day in a certain community can be estimated by \(-b^2 + 8b\), where \(b\) is the number of bulbs. Divide by \(b\) to find the average amount of energy saved per CFL bulb.

19. **BAKING** The number of cookies produced in a factory each day can be estimated by \(-w^2 + 16w + 1000\), where \(w\) is the number of workers. Divide by \(w\) to find the average number of cookies produced per worker.

Examples 2, 4, and 5

Simplify.

12. \((a^2 - 8a - 26) \div (a + 2) \)

13. \((a^2 - 8a - 26) \div (a + 2) \)

14. \((b^3 + 4b^2 + b - 2) \div (b + 1) \)

15. \((x^3 - 3x^2 + 2x - 4)(z - 1)^{-1} \)

16. \((x^3 - 3x^2 + 2x - 4)(z - 1)^{-1} \)

17. \((x^3 - 3x^2 + 2x - 4)(z - 1)^{-1} \)

18. **GEOMETRY** A rectangular box for a new product is designed in such a way that the three dimensions always have a particular relationship defined by the variable \(x\). The volume of the box can be written as \(6x^3 + 31x^2 + 53x + 30\), and the height is always \(x + 2\). What are the width and length of the box?

19. **PHYSICS** The voltage \(V\) is related to current \(I\) and power \(P\) by the equation \(V = \frac{P}{I}\).

The power of a generator is modeled by \(P(t) = t^3 + 9t^2 + 26t + 24\). If the current of the generator is \(I = t + 4\), write an expression that represents the voltage.
34. **ENTERTAINMENT** A magician gives these instructions to a volunteer.
 - Choose a number and multiply it by 4.
 - Then add the sum of your number and 15 to the product you found.
 - Now divide by the sum of your number and 3.

 a. What number will the volunteer always have at the end?
 b. Explain the process you used to discover the answer.

35. **BUSINESS** The number of magazine subscriptions sold can be estimated by
 \[n = \frac{3500a^2}{a^2 + 100}, \]
 where \(a \) is the amount of money the company spent on advertising in hundreds of dollars and \(n \) is the number of subscriptions sold.

 a. Perform the division indicated by \(\frac{3500a^2}{a^2 + 100} \).
 b. About how many subscriptions will be sold if $1500 is spent on advertising?

Simplify.

36. \((x^4 - y^4) \div (x - y) \)
37. \((28c^3d^2 - 21cd^2) \div (14cd) \)
38. \((a^3b^2 - a^2b + 2b)(-ab)^{-1} \)
39. \(\frac{n^3 + 3n^2 - 5n - 4}{n + 4} \)
40. \(\frac{p^3 + 2p^2 - 7p - 21}{p + 3} \)
41. \(\frac{3z^5 + 5z^4 + z + 5}{z + 2} \)

42. **MULTIPLE REPRESENTATIONS** Consider a rectangle with area \(2x^2 + 7x + 3 \) and length \(2x + 1 \).
 a. **Concrete** Use algebra tiles to represent this situation. Use the model to find the width.
 b. **Symbolic** Write an expression to represent the model.
 c. **Numerical** Solve this problem algebraically using synthetic or long division. Does your concrete model check with your algebraic model?

H.O.T. Problems Use Higher-Order Thinking Skills

43. **ERROR ANALYSIS** Sharon and Jamal are dividing \(2x^3 - 4x^2 + 3x - 1 \) by \(x - 3 \). Sharon claims that the remainder is 26. Jamal argues that the remainder is -100. Is either of them correct? Explain your reasoning.

44. **CHALLENGE** If a polynomial is divided by a binomial and the remainder is 0, what does this tell you about the relationship between the binomial and the polynomial?

45. **REASONING** Review any of the division problems in this lesson. What is the relationship between the degrees of the dividend, the divisor, and the quotient?

46. **OPEN ENDED** Write a quotient of two polynomials for which the remainder is 3.

47. **WHICH ONE DOESN’T BELONG?** Identify the expression that does not belong with the other three. Explain your reasoning.
 - \(3xy + 6x^2 \)
 - \(\frac{5}{x^2} \)
 - \(x + 5 \)
 - \(5b + 11c - 9ad^2 \)

48. **WRITING IN MATH** Use the information at the beginning of the lesson to write assembly instructions using the division of polynomials to make a paper cover for your textbook.
Standardized Test Practice

49. An office employs x women and 3 men. What is the ratio of the total number of employees to the number of women?

 - A $\frac{x + 3}{x}$
 - B $\frac{x}{x + 3}$
 - C $\frac{3}{x}$
 - D $\frac{x}{3}$

50. SAT/ACT Which polynomial has degree 3?

 - A $x^3 + x^2 - 2x^4$
 - B $-2x^2 - 3x + 4$
 - C $3x - 3$
 - D $x^2 + x + 12^3$

51. GRIDDED RESPONSE In the figure below, $m + n + p = ?$

 - A x
 - B $\frac{3}{x}$

Spiral Review

Simplify. (Lesson 6-1)

53. $(5x^3 + 2x^2 - 3x + 4) - (2x^3 - 4x)$

54. $(2y^3 - 3y + 8) + (3y^2 - 6y)$

55. $4a(2a - 3) + 3a(5a - 4)$

56. $(c + d)(c - d)(2c - 3d)$

57. $(xy)^2(2xy^2)^3$

58. $(3ab^2)^{-2}(2a^2b)^2$

59. LANDSCAPING Amado wants to plant a garden and surround it with decorative stones. He has enough stones to enclose a rectangular garden with a perimeter of 68 feet, but he wants the garden to cover no more than 240 square feet. What could the width of his garden be? (Lesson 5-8)

Solve each equation by completing the square. (Lesson 5-5)

60. $x^2 + 6x + 2 = 0$

61. $x^2 - 8x - 3 = 0$

62. $2x^2 + 6x + 5 = 0$

State the consecutive integers between which the zeros of each quadratic function are located. (Lesson 5-2)

63. x

<table>
<thead>
<tr>
<th>x</th>
<th>-7</th>
<th>-6</th>
<th>-5</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x)$</td>
<td>4</td>
<td>1</td>
<td>-3</td>
<td>-8</td>
<td>-1</td>
<td>2</td>
<td>8</td>
<td>16</td>
</tr>
</tbody>
</table>

64. x

<table>
<thead>
<tr>
<th>x</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x)$</td>
<td>-16</td>
<td>-7</td>
<td>-4</td>
<td>3</td>
<td>3</td>
<td>-4</td>
<td>-7</td>
<td>-16</td>
</tr>
</tbody>
</table>

65. x

<table>
<thead>
<tr>
<th>x</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x)$</td>
<td>6</td>
<td>1</td>
<td>-3</td>
<td>-5</td>
<td>-3</td>
<td>1</td>
<td>6</td>
<td>14</td>
</tr>
</tbody>
</table>

66. BUSINESS A landscaper can mow a lawn in 30 minutes and perform a small landscape job in 90 minutes. He works at most 10 hours per day, 5 days per week. He earns $35 per lawn and $125 per landscape job. He cannot do more than 3 landscape jobs per day. Find the combination of lawns mowed and completed landscape jobs per week that will maximize income. Then find the maximum income. (Lesson 3-4)

Skills Review

Find each value if $f(x) = 4x + 3$, $g(x) = -x^2$, and $h(x) = -2x^2 - 2x + 4$. (Lesson 2-1)

67. $f(-6)$

68. $g(-8)$

69. $h(3)$

70. $f(c)$

71. $g(3d)$

72. $h(2b + 1)$
Polynomial Functions

Example 1 Degrees and Leading Coefficients

State the degree and leading coefficient of each polynomial in one variable. If it is not a polynomial in one variable, explain why.

a. \(8x^5 - 4x^3 + 2x^2 - x - 3\)
 This is a polynomial in one variable. The greatest exponent is 5, so the degree is 5 and the leading coefficient is 8.

b. \(12x^2 - 3xy + 8x\)
 This is not a polynomial in one variable. There are two variables, \(x\) and \(y\).

c. \(3x^4 + 6x^3 - 4x^2 + 2x\)
 This is a polynomial in one variable. The greatest exponent is 4, so the degree is 4 and the leading coefficient is 3.

Guided Practice

1A. \(5x^3 - 4x^2 - 8x + \frac{4}{x}\)
1B. \(5x^6 - 3x^4 + 12x^3 - 14\)
1C. \(8x^4 - 2x^3 - x^6 + 3\)

New Vocabulary

- polynomial in one variable
- leading coefficient
- polynomial function
- power function
- end behavior
- quartic function
- quintic function

Tennessee Curriculum Standards

✓ 3103.3.22 Determine the number and possible types of zeros for a polynomial function and find the rational roots.
✓ 3103.3.23 Understand the connection between the roots, zeros, x-intercepts, factors of polynomials, and solutions of polynomial equations.

SPI 3103.3.2 Solve quadratic equations and systems, and determine roots of a higher order polynomial. Also addresses ✓ 3103.2.12 and SPI 3103.3.5.

1 Polynomial Functions A polynomial in one variable is an expression of the form
\[a_nx^n + a_{n-1}x^{n-1} + \cdots + a_2x^2 + a_1x + a_0\]
where \(a_n \neq 0\), \(a_{n-1}\), \(a_2\), \(a_1\), and \(a_0\) are real numbers, and \(n\) is a nonnegative integer.

The polynomial is written in standard form when the values of the exponents are in descending order. The degree of the polynomial is the value of the greatest exponent. The coefficient of the first term of a polynomial in standard form is called the leading coefficient.

<table>
<thead>
<tr>
<th>Polynomial</th>
<th>Expression</th>
<th>Degree</th>
<th>Leading Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>12</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Linear</td>
<td>4x - 9</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Quadratic</td>
<td>5x^2 - 6x - 9</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Cubic</td>
<td>8x^3 + 12x^2 - 3x + 1</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>General</td>
<td>(a_nx^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0)</td>
<td>(n)</td>
<td>(a_n)</td>
</tr>
</tbody>
</table>

✔ (Lesson 5-1)

1. Evaluate polynomial functions.
2. Identify general shapes of graphs of polynomial functions.
3. The volume of air in the lungs during a 5-second respiratory cycle can be modeled by \(v(t) = -0.037t^3 + 0.152t^2 + 0.173t\), where \(v\) is the volume in liters and \(t\) is the time in seconds. This model is an example of a polynomial function.

✔ You analyzed graphs of quadratic functions. (Lesson 5-1)
A **polynomial function** is a continuous function that can be described by a polynomial equation in one variable. For example, \(f(x) = 3x^3 - 4x + 6 \) is a cubic polynomial function. The simplest polynomial functions of the form \(f(x) = ax^b \) where \(a \) and \(b \) are real numbers are called **power functions**.

If you know an element in the domain of any polynomial function, you can find the corresponding value in the range.

Real-World Example 2 Evaluate a Polynomial Function

RESPIRATION Refer to the beginning of the lesson. Find the volume of air in the lungs 2 seconds into the respiratory cycle.

By substituting 2 into the function we can find \(v(2) \), the volume of air in the lungs 2 seconds into the respiration cycle.

\[
\begin{align*}
v(t) &= -0.037t^3 + 0.152t^2 + 0.173t \\
v(2) &= -0.037(2)^3 + 0.152(2)^2 + 0.173(2) \\
&= -0.296 + 0.608 + 0.346 \\
&= 0.658 \text{ L}
\end{align*}
\]

Guided Practice

2. Find the volume of air in the lungs 4 seconds into the respiratory cycle.

You can also evaluate functions for variables and algebraic expressions.

Example 3 Function Values of Variables

Find \(f(3c - 4) - 5f(c) \) if \(f(x) = x^2 + 2x - 3 \).

To evaluate \(f(3c - 4) \), replace the \(x \) in \(f(x) \) with \(3c - 4 \).

\[
\begin{align*}
f(x) &= x^2 + 2x - 3 \quad \text{Original function} \\
f(3c - 4) &= (3c - 4)^2 + 2(3c - 4) - 3 \\
&= 9c^2 - 24c + 16 + 6c - 8 - 3 \\
&= 9c^2 - 18c + 5 \quad \text{Multiply.}
\end{align*}
\]

To evaluate \(5f(c) \), replace \(x \) with \(c \) in \(f(x) \), then multiply by 5.

\[
\begin{align*}
f(x) &= x^2 + 2x - 3 \quad \text{Original function} \\
5f(c) &= 5(c^2 + 2c - 3) \\
&= 5c^2 + 10c - 15 \quad \text{Distribute.}
\end{align*}
\]

Now evaluate \(f(3c - 4) - 5f(c) \).

\[
\begin{align*}
f(3c - 4) - 5f(c) &= (9c^2 - 18c + 5) - (5c^2 + 10c - 15) \\
&= 9c^2 - 18c + 5 - 5c^2 - 10c + 15 \\
&= 4c^2 - 28c + 20 \quad \text{Simplify.}
\end{align*}
\]

Guided Practice

3A. Find \(g(5a - 2) + 3g(2a) \) if \(g(x) = x^2 - 5x + 8 \).

3B. Find \(h(-4d + 3) - 0.5h(d) \) if \(h(x) = 2x^2 + 5x + 3 \).
Graphs of Polynomial Functions The general shapes of the graphs of several polynomial functions show the maximum number of times the graph of each function may intersect the x-axis. This is the same number as the degree of the polynomial.

The domain of any polynomial function is all real numbers. The end behavior is the behavior of the graph of $f(x)$ as x approaches positive infinity ($x \to +\infty$) or negative infinity ($x \to -\infty$). The degree and leading coefficient of a polynomial function determine the end behavior of the graph and the range of the function.

Key Concept End Behavior of a Polynomial Function

<table>
<thead>
<tr>
<th>Degree: even</th>
<th>Leading Coefficient: positive</th>
<th>End Behavior:</th>
<th>Degree: even</th>
<th>Leading Coefficient: negative</th>
<th>End Behavior:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x) \to +\infty$ as $x \to -\infty$</td>
<td>$f(x) \to +\infty$ as $x \to +\infty$</td>
<td>$f(x) \to -\infty$ as $x \to -\infty$</td>
<td>$f(x) \to -\infty$ as $x \to +\infty$</td>
<td>$f(x) \to +\infty$ as $x \to -\infty$</td>
<td>$f(x) \to -\infty$ as $x \to +\infty$</td>
</tr>
<tr>
<td>Domain: all reals</td>
<td>Range: all reals \geq minimum</td>
<td>Domain: all reals</td>
<td>Range: all reals \leq maximum</td>
<td>Domain: all reals</td>
<td>Range: all reals</td>
</tr>
</tbody>
</table>

ReviewVocabulary
infinity endless or boundless (Explore Lesson 1-6)
The number of real zeros of a polynomial equation can be determined from the graph of its related polynomial function. Recall that real zeros occur at x-intercepts, so the number of times a graph crosses the x-axis equals the number of real zeros.

Key Concept: Zeros of Even- and Odd-Degree Functions

Odd-degree functions will always have an odd number of real zeros. Even-degree functions will always have an even number of real zeros or no real zeros at all.

Example 4 Graphs of Polynomial Functions

For each graph,
- describe the end behavior,
- determine whether it represents an odd-degree or an even-degree polynomial function, and
- state the number of real zeros.

a. $f(x) \rightarrow -\infty$ as $x \rightarrow -\infty$.
 $f(x) \rightarrow -\infty$ as $x \rightarrow +\infty$.

Since the end behavior is in the same direction, it is an even-degree function. The graph intersects the x-axis at two points, so there are two real zeros.

b. $f(x) \rightarrow +\infty$ as $x \rightarrow -\infty$.
 $f(x) \rightarrow -\infty$ as $x \rightarrow +\infty$.

Since the end behavior is in opposite directions, it is an odd-degree function. The graph intersects the x-axis at five points, so there are five real zeros.
Check Your Understanding

Example 1 State the degree and leading coefficient of each polynomial in one variable. If it is not a polynomial in one variable, explain why.

1. $11x^6 - 5x^5 + 4x^2$
2. $-10x^7 - 5x^3 + 4x - 22$
3. $14x^4 - 9x^3 + 3x - 4y$
4. $8x^5 - 3x^2 + 4xy - 5$

Example 2 Find $w(5)$ and $w(-4)$ for each function.

5. $w(x) = -2x^3 + 3x - 12$
6. $w(x) = 2x^4 - 5x^3 + 3x^2 - 2x + 8$

Example 3 If $c(x) = 4x^3 - 5x^2 + 2$ and $d(x) = 3x^2 + 6x - 10$, find each value.

7. $c(y^3)$
8. $-4[d(3z)]$
9. $6c(4a) + 2d(3a - 5)$
10. $-3c(2b) + 6d(4b - 3)$

Example 4 For each graph,

a. describe the end behavior,

b. determine whether it represents an odd-degree or an even-degree function, and

c. state the number of real zeros.

11. [Graph]
12. [Graph]

Practice and Problem Solving

Example 1 State the degree and leading coefficient of each polynomial in one variable. If it is not a polynomial in one variable, explain why.

13. $-6x^6 - 4x^5 + 13xy$
14. $3a^7 - 4a^4 + \frac{3}{a}$
15. $8x^5 - 12x^6 + 14x^3 - 9$
16. $-12 - 8x^2 + 5x - 21x^7$
17. $15x - 4x^3 + 3x^2 - 5x^4$
18. $13b^3 - 9b + 3b^5 - 18$
19. $(d + 5)(3d - 4)$
20. $(5 - 2y)(4 + 3y)$
21. $6x^5 - 5x^4 + 2x^9 - 3x^2$
22. $7x^4 + 3x^7 - 2x^8 + 7$

Example 2 Find $p(-6)$ and $p(3)$ for each function.

23. $p(x) = x^4 - 2x^2 + 3$
24. $p(x) = -3x^3 - 2x^2 + 4x - 6$
25. $p(x) = 2x^3 + 6x^2 - 10x$
26. $p(x) = x^4 - 4x^3 + 3x^2 - 5x + 24$
27. $p(x) = -x^3 + 3x^2 - 5$
28. $p(x) = 2x^4 + x^3 - 4x^2$

Example 3 If $c(x) = 2x^2 - 4x + 3$ and $d(x) = -x^3 + x + 1$, find each value.

29. $c(3a)$
30. $5d(2a)$
31. $c(b^2)$
32. $d(4a^2)$
33. $d(4y - 3)$
34. $c(y^2 - 1)$
Example 4

For each graph,

a. describe the end behavior,

b. determine whether it represents an odd-degree or an even-degree function, and

c. state the number of real zeros.

35.

36.

37.

38.

39.

40.

41. **PHYSICS** For a moving object with mass \(m \) in kilograms, the kinetic energy \(KE \) in joules is given by the function \(KE(v) = 0.5mv^2 \), where \(v \) represents the speed of the object in meters per second. Find the kinetic energy of an all-terrain vehicle with a mass of 171 kilograms moving at a speed of 11 meters/second.

42. **BUSINESS** A microwave manufacturing firm has determined that their profit function is \(P(x) = -0.0014x^3 + 0.3x^2 + 6x - 355 \), where \(x \) is the number of microwaves sold annually.

a. Graph the profit function using a calculator.

b. Determine a reasonable viewing window for the function.

c. Approximate all of the zeros of the function using the **CALC** menu.

d. What must be the range of microwaves sold in order for the firm to have a profit?

Find \(p(-2) \) and \(p(8) \) for each function.

43. \(p(x) = \frac{1}{4}x^4 + \frac{1}{2}x^3 - 4x^2 \)

44. \(p(x) = \frac{1}{8}x^4 - \frac{3}{2}x^3 + 12x - 18 \)

45. \(p(x) = \frac{3}{4}x^4 - \frac{1}{8}x^2 + 6x \)

46. \(p(x) = \frac{5}{8}x^3 - \frac{1}{2}x^2 + \frac{3}{4}x + 10 \)

Use the degree and end behavior to match each polynomial to its graph.

A

B

C

D

47. \(f(x) = x^3 + 3x^2 - 4x \)

48. \(f(x) = -2x^2 + 8x + 5 \)

49. \(f(x) = x^4 - 3x^2 + 6x \)

50. \(f(x) = -4x^3 - 4x^2 + 8 \)

If \(c(x) = x^3 - 2x \) and \(d(x) = 4x^2 - 6x + 8 \), find each value.

51. \(3c(a - 4) + 3d(a + 5) \)

52. \(-2d(2a + 3) - 4c(a^2 + 1) \)

53. \(5c(a^2) - 8d(6 - 3a) \)

54. \(-7d(a^3) + 6c(a^4 + 1) \)
55. **BUSINESS** A clothing manufacturer’s profitability can be modeled by
\[p(x) = -x^4 + 40x^2 - 144, \]
where \(x \) is the number of items sold in thousands and \(p(x) \) is the company’s profit in thousands of dollars.

a. Use a table of values to sketch the function.
b. Determine the zeros of the function.
c. Between what two values should the company sell in order to be profitable?
d. Explain why only two of the zeros are considered in part c.

56. **MULTIPLE REPRESENTATIONS** Consider \(g(x) = (x - 2)(x + 1)(x - 3)(x + 4) \).

a. **Analytical** Determine the \(x \)- and \(y \)-intercepts, roots, degree, and end behavior of \(g(x) \).
b. **Algebraic** Write the function in standard form
c. **Tabular** Make a table of values for the function.
d. **Graphical** Sketch a graph of the function by plotting points and connecting them with a smooth curve.

Describe the end behavior of the graph of each function.

\[\begin{align*}
57. f(x) &= -5x^4 + 3x^2 \\
58. g(x) &= 2x^5 + 6x^4 \\
59. h(x) &= -4x^7 + 8x^6 - 4x \\
60. f(x) &= 6x - 7x^2 \\
61. g(x) &= 8x^4 + 5x^5 \\
62. h(x) &= 9x^6 - 5x^7 + 3x^2
\end{align*} \]

H.O.T. Problems Use Higher-Order Thinking Skills

63. **ERROR ANALYSIS** Shenequa and Virginia are determining the number of zeros of the graph at the right. Is either of them correct? Explain your reasoning.

Shenequa

There are 7 zeros because the graph crosses the \(x \)-axis 7 times.

Virginia

There are 8 zeros because the graph crosses the \(x \)-axis 7 times, and there is a double root.

64. **CHALLENGE** Use the table to determine the minimum number of real roots and the minimum degree of the polynomial function \(f(x) \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>-24</th>
<th>-18</th>
<th>-12</th>
<th>-6</th>
<th>0</th>
<th>6</th>
<th>12</th>
<th>18</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>-8</td>
<td>-1</td>
<td>3</td>
<td>-2</td>
<td>4</td>
<td>7</td>
<td>-1</td>
<td>-8</td>
<td>5</td>
</tr>
</tbody>
</table>

65. **CHALLENGE** If \(f(x) \) has a degree of 5 and a positive leading coefficient and \(g(x) \) has a degree of 3 and a positive leading coefficient, determine the end behavior of \(\frac{f(x)}{g(x)} \). Explain your reasoning.

66. **OPEN ENDED** Sketch the graph of an even-degree polynomial with 8 real roots, one of them a double root.

67. **REASONING** Determine whether the following statement is *always*, *sometimes*, or *never* true. Explain.

* A polynomial function that has four real roots is a fourth-degree polynomial.

68. **WRITING IN MATH** Describe what the end behavior of a polynomial function is and how to determine it.
69. SHORT RESPONSE Four students solved the same math problem. Each student’s work is shown below. Who is correct?

\[\begin{align*}
\text{Student A} & : x^2x^{-5} = \frac{x^2}{x^5} = \frac{1}{x^3}, x \neq 0 \\
\text{Student C} & : x^2x^{-5} = \frac{x^2}{x^5} = x^7, x \neq 0 \\
\text{Student B} & : x^2x^{-5} = \frac{x^2}{x^5} = x^{-7}, x \neq 0 \\
\text{Student D} & : x^2x^{-5} = \frac{x^2}{x^5} = x^3, x \neq 0
\end{align*} \]

70. SAT/ACT What is the remainder when \(x^3 - 7x + 5 \) is divided by \(x + 3? \)

A. \(-11\) \hspace{1cm} D. \(11\)
B. \(-1\) \hspace{1cm} E. \(35\)
C. \(1\)

71. EXTENDED RESPONSE A company manufactures tables and chairs. It costs \(\$40 \) to make each table and \(\$25 \) to make each chair. There is \(\$1440 \) available to spend on manufacturing each week. Let \(t \) = the number of tables produced and \(c \) = the number of chairs produced.

\(a. \) The manufacturing equation is \(40t + 25c = 1500 \). Construct a graph of this equation.

\(b. \) The company always produces two chairs with each table. Write and graph an equation to represent this situation on the same graph as the one in part a.

\(c. \) Determine the number of tables and chairs that the company can produce each week.

\(d. \) Explain how to determine this answer using the graph.

72. If \(i = \sqrt{-1} \), then \(5i(7i) = \)

F. \(70 \) \hspace{1cm} H. \(-35\)
G. \(35\) \hspace{1cm} J. \(-70\)

Spiral Review

Simplify. (Lesson 6-2)

73. \(\frac{16x^4y^3 + 32x^5y^2z^2}{8x^2y} \)

74. \(\frac{18ab^4c^5 - 30a^3b^2c^2 + 12a^3b^2c^3}{6abc^2} \)

75. \(\frac{18c^5d^2 - 3c^2d^2 + 12c^3d^4}{3c^2d^2} \)

Determine whether each expression is a polynomial. If it is a polynomial, state the degree of the polynomial. (Lesson 6-1)

76. \(8x^2 + 5xy^3 - 6x + 4 \)

77. \(9x^4 + 12x^6 - 16 \)

78. \(3x^4 + 2x^2 - x^{-1} \)

79. **FOUNTAINS** The height of a fountain’s water stream can be modeled by a quadratic function. Suppose the water from a jet reaches a maximum height of 8 feet at a distance 1 foot away from the jet. (Lesson 5-7)

\(a. \) If the water lands 3 feet away from the jet, find a quadratic function that models the height \(h(d) \) of the water at any given distance \(d \) feet from the jet. Then compare the graph of the function to the parent function.

\(b. \) Suppose a worker increases the water pressure so that the stream reaches a maximum height of 12.5 feet at a distance of 15 inches from the jet. The water now lands 3.75 feet from the jet. Write a new quadratic function for \(h(d) \). How do the changes in \(h \) and \(k \) affect the shape of the graph?

Solve each inequality. (Lesson 1-6)

80. \(|2x + 4| \leq 8 \)

81. \(|-3x + 2| \geq 4 \)

82. \(|2x - 8| - 4 \leq -6 \)

Skills Review

Determine whether each function has a maximum or minimum value, and find that value. (Lesson 5-1)

83. \(f(x) = 3x^2 - 8x + 4 \)

84. \(f(x) = -4x^2 + 2x - 10 \)

85. \(f(x) = -0.25x^2 + 4x - 5 \)
Algebra Lab
Polynomial Functions and Rate of Change

In Chapter 2, you learned that linear functions have a constant first-order difference. Then in Chapter 5, you learned that quadratic functions have a constant second-order difference. Now, you will examine the differences for polynomial functions with degree greater than 2.

Activity

Consider \(f(x) = -2x^3 \).

Step 1 Copy the table and complete row 2 for \(x \)-values from \(-4\) through \(4\).

<table>
<thead>
<tr>
<th>(x)</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>\ldots</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First-order Differences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second-order Differences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third-order Differences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 2 Graph the ordered pairs \((x, y)\) and connect the points with a smooth curve.

Step 3 Find the first-order differences and complete row 3. Describe any patterns in the differences.

Step 4 Complete rows 4 and 5 by finding the second- and third-order differences. Describe any patterns in the differences. Make a conjecture about the differences for a third-degree polynomial function.

Step 5 Repeat Steps 1 through 4 using a fourth-degree polynomial function. Make a conjecture about the differences for an \(n \)th-degree polynomial function.

Exercises

State the degree of each polynomial function described.

1. constant second-order difference of \(-3\)
2. constant fifth-order difference of \(12\)
3. constant first-order difference of \(-1.25\)

CHALLENGE Write an equation for a polynomial function with real-number coefficients for the ordered pairs and differences in the table. Make sure your equation is satisfied for all of the ordered pairs \((x, y)\).

<table>
<thead>
<tr>
<th>(x)</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-order Differences</td>
<td>19</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>19</td>
<td>19</td>
</tr>
</tbody>
</table>
Example 1 Graph of a Polynomial Function

Graph \(f(x) = -x^4 + x^3 + 3x^2 + 2x \) by making a table of values.

\(x \)	\(f(x) \)		\(x \)	\(f(x) \)
---------	-----------		---------	-----------
-2.5	≈ -41		0.5	≈ 1.8
-2.0	-16		1.0	5.0
-1.5	≈ -4.7		1.5	≈ 8.1
-1.0	-1.0		2.0	8.0
-0.5	≈ -0.4		2.5	≈ 0.3
0.0	0.0		3.0	-21

This is an even-degree polynomial with a negative leading coefficient, so \(f(x) \to -\infty \) as \(x \to -\infty \) and \(f(x) \to -\infty \) as \(x \to +\infty \). Notice that the graph intersects the \(x \)-axis at two points, indicating there are two zeros for this function.

Guided Practice

1. Graph \(f(x) = x^4 - x^3 - 2x^2 + 4x - 6 \) by making a table of values.

In Example 1, one of the zeros occurred at \(x = 0 \). Another zero occurred between \(x = 2.5 \) and \(x = 3.0 \). Because \(f(x) \) is positive for \(x = 2.5 \) and negative for \(x = 3.0 \) and all polynomial functions are continuous, we know there is a zero between these two values.

So, if the value of \(f(x) \) changes signs from one value of \(x \) to the next, then there is a zero between those two \(x \)-values. This idea is called the Location Principle.
StudyTip

Odd Functions Some odd functions, like $f(x) = x^3$, have no turning points.

Example 2 Locate Zeros of a Function

Determine consecutive integer values of x between which each real zero of $f(x) = x^3 - 4x^2 + 3x + 1$ is located. Then draw the graph.

Make a table of values. Since $f(x)$ is a third-degree polynomial function, it will have either 3 or 1 real zeros. Look at the values of $f(x)$ to locate the zeros. Then use the points to sketch a graph of the function.

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>-29</td>
</tr>
<tr>
<td>-1</td>
<td>-7</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
</tr>
</tbody>
</table>

The changes in sign indicate that there are zeros between $x = -1$ and $x = 0$, between $x = 1$ and $x = 2$, and between $x = 2$ and $x = 3$.

Guided Practice

2. Determine consecutive integer values of x between which each real zero of the function $f(x) = x^4 - 3x^3 - 2x^2 + x + 1$ is located. Then draw the graph.

Maximum and Minimum Points

The graph below shows the general shape of a third-degree polynomial function.

Point A on the graph is a **relative maximum** of the function since no other nearby points have a greater y-coordinate. The graph is increasing as it approaches A and decreasing as it moves from A.

Likewise, point B is a **relative minimum** since no other nearby points have a lesser y-coordinate. The graph is decreasing as it approaches B and increasing as it moves from B. The maximum and minimum values of a function are called the **extrema**.

These points are often referred to as **turning points**. The graph of a polynomial function of degree n has at most $n - 1$ turning points.
Example 3 Maximum and Minimum Points

Graph \(f(x) = x^3 - 4x^2 - 2x + 3 \). Estimate the \(x \)-coordinates at which the relative maxima and relative minima occur.

Make a table of values and graph the function.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>-17</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>-2</td>
</tr>
<tr>
<td>2</td>
<td>-9</td>
</tr>
<tr>
<td>3</td>
<td>-12</td>
</tr>
<tr>
<td>4</td>
<td>-4</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
</tr>
</tbody>
</table>

Look at the table of values and the graph.

The value of \(f(x) \) changes signs between \(x = 4 \) and \(x = 5 \), indicating a zero of the function.

The value of \(f(x) \) at \(x = 0 \) is greater than the surrounding points, so there must be a relative maximum near \(x = 0 \).

The value of \(f(x) \) at \(x = 3 \) is less than the surrounding points, so there must be a relative minimum near \(x = 3 \).

CHECK You can use a graphing calculator to find the relative maximum and relative minimum of a function and confirm your estimates.

Enter \(y = x^3 - 4x^2 - 2x + 3 \) in the \(Y= \) list and graph the function.

Use the **CALC** menu to find each maximum and minimum.

When selecting the left bound, move the cursor to the left of the maximum or minimum. When selecting the right bound, move the cursor to the right of the maximum or minimum.

Press **ENTER** twice.

The estimates for a relative maximum near \(x = 0 \) and a relative minimum near \(x = 3 \) are accurate.

Guided Practice

3. Graph \(f(x) = 2x^3 + x^2 - 4x - 2 \). Estimate the \(x \)-coordinates at which the relative maxima and relative minima occur.
The graph of a polynomial function can reveal trends in real-world data. It is often helpful to note when the graph is increasing or decreasing.

Real-World Example 4: Graph a Polynomial Model

MOVIES Refer to the beginning of the lesson. Annual admissions to movies in the United States can be modeled by the function \(f(x) = -0.0017x^4 + 0.31x^3 - 17.66x^2 + 277x + 3005 \), where \(x \) is the number of years since 1926 and \(f(x) \) is the annual admissions in millions.

a. Graph the function.

Make a table of values for the years 1926–2006. Plot the points and connect with a smooth curve. Finding and plotting the points for every tenth year gives a good approximation of the graph.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3005</td>
</tr>
<tr>
<td>10</td>
<td>4302</td>
</tr>
<tr>
<td>20</td>
<td>3689</td>
</tr>
<tr>
<td>30</td>
<td>2414</td>
</tr>
<tr>
<td>40</td>
<td>1317</td>
</tr>
<tr>
<td>50</td>
<td>830</td>
</tr>
<tr>
<td>60</td>
<td>977</td>
</tr>
<tr>
<td>70</td>
<td>1374</td>
</tr>
<tr>
<td>80</td>
<td>1229</td>
</tr>
</tbody>
</table>

b. Describe the turning points of the graph and its end behavior.

There are relative maxima near 1936 and 2000 and a relative minimum between 1976 and 1981. \(f(x) \to -\infty \) as \(x \to -\infty \) and \(f(x) \to -\infty \) as \(x \to \infty \).

c. What trends in movie admissions does the graph suggest? Is it reasonable that the trend will continue indefinitely?

Movie attendance peaked around 1936 and declined until about 1978. It then increased until 2000 and began a decline.

d. Is it reasonable that the trend will continue indefinitely?

This trend may continue for a couple of years, but the graph will soon become unreasonable as it predicts negative attendance for the future.

Guided Practice

4. **FAX MACHINES** The annual sales of fax machines for home use can be modeled by \(f(x) = -0.17x^4 + 6.29x^3 - 77.65x^2 + 251x + 1100 \), where \(x \) is the number of years after 1990 and \(f(x) \) is the annual sales in millions of dollars.

A. Graph the function.

B. Describe the turning points of the graph and its end behavior.

C. What trends in fax machine sales does the graph suggest?

D. Is it reasonable that the trend will continue indefinitely?
Check Your Understanding

Example 1 Graph each polynomial equation by making a table of values.

1. \(f(x) = 2x^4 - 5x^3 + x^2 - 2x + 4 \)
2. \(f(x) = -2x^4 + 4x^3 + 2x^2 + x - 3 \)
3. \(f(x) = 3x^4 - 4x^3 - 2x^2 + x - 4 \)
4. \(f(x) = -4x^4 + 5x^3 + 2x^2 + 3x + 1 \)

Example 2 Determine the consecutive integer values of \(x \) between which each real zero of each function is located. Then draw the graph.

5. \(f(x) = x^3 - 2x^2 + 5 \)
6. \(f(x) = -x^4 + x^3 + 2x^2 + x + 1 \)
7. \(f(x) = -3x^4 + 5x^3 + 4x^2 + 4x - 8 \)
8. \(f(x) = 2x^4 - x^3 - 3x^2 + 2x - 4 \)

Example 3 Graph each polynomial function. Estimate the \(x \)-coordinates at which the relative maxima and minima occur. State the domain and range for each function.

9. \(f(x) = x^3 + x^2 - 6x - 3 \)
10. \(f(x) = 3x^3 - 6x^2 - 2x + 2 \)
11. \(f(x) = -x^3 + 4x^2 - 2x - 1 \)
12. \(f(x) = -x^3 + 2x^2 - 3x + 4 \)

Example 4 13. MUSIC SALES Annual compact disc sales can be modeled by the quartic function \(f(x) = 0.48x^4 - 9.6x^3 + 53x^2 - 49x + 599 \), where \(x \) is the number of years after 1995 and \(f(x) \) is annual sales in millions.

a. Graph the function for \(0 \leq x \leq 10 \).

b. Describe the turning points of the graph and its end behavior.

c. Continue the graph for \(x = 11 \) and \(x = 12 \). What trends in compact disc sales does the graph suggest?

d. Is it reasonable that the trend will continue indefinitely? Explain.

Practice and Problem Solving

Examples 1–3 Complete each of the following.

a. Graph each function by making a table of values.

b. Determine the consecutive integer values of \(x \) between which each real zero is located.

c. Estimate the \(x \)-coordinates at which the relative maxima and minima occur.

14. \(f(x) = x^3 + 3x^2 \)
15. \(f(x) = -x^3 + 2x^2 - 4 \)
16. \(f(x) = x^3 + 4x^2 - 5x \)
17. \(f(x) = x^3 - 5x^2 + 3x + 1 \)
18. \(f(x) = -2x^3 + 12x^2 - 8x \)
19. \(f(x) = 2x^3 - 4x^2 - 3x + 4 \)
20. \(f(x) = x^4 + 2x - 1 \)
21. \(f(x) = x^4 + 8x^2 - 12 \)

Example 4 22. FINANCIAL LITERACY The average annual price of gasoline can be modeled by the cubic function \(f(x) = 0.0007x^3 - 0.014x^2 + 0.08x + 0.96 \), where \(x \) is the number of years after 1987 and \(f(x) \) is the price in dollars.

a. Graph the function for \(0 \leq x \leq 30 \).

b. Describe the turning points of the graph and its end behavior.

c. What trends in gasoline prices does the graph suggest?

d. Is it reasonable that the trend will continue indefinitely? Explain.

Use a graphing calculator to estimate the \(x \)-coordinates at which the maxima and minima of each function occur. Round to the nearest hundredth.

23. \(f(x) = x^3 + 3x^2 - 6x - 6 \)
24. \(f(x) = -2x^3 + 4x^2 - 5x + 8 \)
25. \(f(x) = -2x^4 + 5x^3 - 4x^2 + 3x - 7 \)
26. \(f(x) = x^5 - 4x^3 + 3x^2 - 8x - 6 \)
Sketch the graph of polynomial functions with the following characteristics.

27. an odd function with zeros at $-5, -3, 0, 2$ and 4
28. an even function with zeros at $-2, 1, 3,$ and 5
29. a 4-degree function with a zero at -3, maximum at $x = 2$, and minimum at $x = -1$
30. a 5-degree function with zeros at $-4, -1,$ and 3, maximum at $x = -2$
31. an odd function with zeros at $-1, 2,$ and 5 and a negative leading coefficient
32. an even function with a minimum at $x = 3$ and a positive leading coefficient

DIVING The deflection d of a 10-foot-long diving board can be calculated using the function $d(x) = 0.015x^2 - 0.0005x^3$, where x is the distance between the diver and the stationary end of the board in feet.

a. Make a table of values of the function for $0 \leq x \leq 10$.

b. Graph the function.

c. What does the end behavior of the graph suggest as x increases?

d. Will this trend continue indefinitely? Explain your reasoning.

Complete each of the following.

a. Estimate the x-coordinate of every turning point and determine if those coordinates are relative maxima or relative minima.

b. Estimate the x-coordinate of every zero.

c. Determine the smallest possible degree of the function.

d. Determine the domain and range of the function.

40. PAGERS The number of subscribers using pagers in the United States can be modeled by $f(x) = 0.015x^4 - 0.44x^3 + 3.46x^2 - 2.7x + 9.68$, where x is the number of years after 1990 and $f(x)$ is the number of subscribers in millions.

a. Graph the function.

b. Describe the end behavior of the graph.

c. What does the end behavior suggest about the number of pager subscribers?

d. Will this trend continue indefinitely? Explain your reasoning.
41. **PRICING** Jin’s vending machines currently sell an average of 3500 beverages per week at a rate of $0.75 per can. She is considering increasing the price. Her weekly earnings can be represented by \(f(x) = -5x^2 + 100x + 2625 \), where \(x \) is the number of $0.05 increases. Graph the function and determine the most profitable price for Jin.

For each function,
- **a.** determine the zeros, \(x \)- and \(y \)-intercepts, and turning points,
- **b.** determine the axis of symmetry, and
- **c.** determine the intervals for which it is increasing, decreasing, or constant.

42. \(y = x^4 - 8x^2 + 16 \)

43. \(y = x^5 - 3x^3 + 2x - 4 \)

44. \(y = -2x^4 + 4x^3 - 5x \)

45. \(y = \begin{cases} x^2 & \text{if } x \leq -4 \\ 5 & \text{if } -4 < x \leq 0 \\ x^3 & \text{if } x > 0 \end{cases} \)

46. **MULTIPLE REPRESENTATIONS** Consider the following function.

\(f(x) = x^4 - 8.65x^3 + 27.34x^2 - 37.2285x + 18.27 \)

- **a.** **Analytical** What are the degree, leading coefficient, and end behavior?
- **b.** **Tabular** Make a table of integer values \(f(x) \) if \(-4 \leq x \leq 4\). How many zeros does the function appear to have from the table?
- **c.** **Graphical** Graph the function by using a graphing calculator.
- **d.** **Graphical** Change the viewing window to \([0, 4] \text{ scl: 1 by } [-0.4, 0.4] \text{ scl: 0.2}\). What conclusions can you make from this new view of the graph?

H.O.T. Problems *Use Higher-Order Thinking Skills*

47. **REASONING** Explain why the leading coefficient and the degree are the only determining factors in the end behavior of a polynomial function.

48. **REASONING** The table below shows the values of \(g(x) \), a cubic function. Could there be a zero between \(x = 2 \) and \(x = 3 \)? Explain your reasoning.

<table>
<thead>
<tr>
<th>(x)</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g(x))</td>
<td>4</td>
<td>-2</td>
<td>-1</td>
<td>1</td>
<td>-2</td>
<td>-2</td>
</tr>
</tbody>
</table>

49. **OPEN ENDED** Sketch the graph of an odd polynomial function with 6 turning points and 2 double roots.

50. **REASONING** Determine whether the following statement is *sometimes*, *always*, or *never* true. Explain your reasoning.

For any continuous polynomial function, the \(y \)-coordinate of a turning point is also either a relative maximum or relative minimum.

51. **REASONING** A function is said to be even if for every \(x \) in the domain of \(f \), \(f(x) = f(-x) \). Is every even-degree polynomial function also an even function? Explain.

52. **REASONING** A function is said to be odd if for every \(x \) in the domain, \(-f(x) = f(-x) \). Is every odd-degree polynomial function also an odd function? Explain.

53. **WRITING IN MATH** Describe the process of sketching the graph of a polynomial function using its degree, leading coefficient, zeros, and turning points.
54. Which of the following is the factorization of $2x - 15 + x^2$?
 A. $(x - 3)(x - 5)$
 B. $(x - 3)(x + 5)$
 C. $(x + 3)(x - 5)$
 D. $(x + 3)(x + 5)$

55. SHORT RESPONSE In the figure below, if $x = 35$ and $z = 50$, what is the value of y?

![Graph of a polynomial function]

56. Which polynomial represents $(4x^2 + 5x - 3)(2x - 7)$?
 F. $8x^3 - 18x^2 - 41x - 21$
 G. $8x^3 + 18x^2 + 29x - 21$
 H. $8x^3 - 18x^2 - 41x + 21$
 J. $8x^3 + 18x^2 - 29x + 21$

57. SAT/ACT The figure at the right shows the graph of a polynomial function $f(x)$. Which of the following could be the degree of $f(x)$?
 A. 2 D. 5
 B. 3 E. 6
 C. 4

Spiral Review

For each graph,
 a. describe the end behavior,
 b. determine whether it represents an odd-degree or an even-degree function, and
 c. state the number of real zeros. (Lesson 6-3)

58.

59.

60.

Simplify. (Lesson 6-2)

61. $(x^3 + 2x^2 - 5x - 6) ÷ (x + 1)$
62. $(4y^3 + 18y^2 + 5y - 12) ÷ (y + 4)$
63. $(2a^3 - a^2 - 4a) ÷ (a - 1)$

64. CHEMISTRY Tanisha needs 200 milliliters of a 48% concentration acid solution. She has 60% and 40% concentration solutions in her lab. How many milliliters of 40% acid solution should be mixed with 60% acid solution to make the required amount of 48% acid solution? (Lesson 4-6)

Skills Review

Factor. (Lesson 5-3)

65. $x^2 + 6x + 3x + 18$
66. $y^2 - 5y - 8y + 40$
67. $a^2 + 6a - 16$
68. $b^2 - 4b - 21$
69. $6x^2 - 5x - 4$
70. $4x^2 - 7x - 15$
You can use a TI-83/84 Plus graphing calculator to model data points when a curve of best fit is a polynomial function.

Example

The table shows the distance a seismic wave produced by an earthquake travels from the epicenter. Draw a scatter plot and a curve of best fit to show how the distance is related to time. Then determine approximately how far away from the epicenter a seismic wave will be felt 8.5 minutes after an earthquake occurs.

<table>
<thead>
<tr>
<th>Travel Time (min)</th>
<th>1</th>
<th>2</th>
<th>5</th>
<th>7</th>
<th>10</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance (km)</td>
<td>400</td>
<td>800</td>
<td>2500</td>
<td>3900</td>
<td>6250</td>
<td>8400</td>
<td>10,000</td>
</tr>
</tbody>
</table>

Source: University of Arizona

Step 1 Enter time in L1 and distance in L2.

KEYSTROKES:
```
STAT 1 ENTER 2 ENTER 5 ENTER 7 ENTER 10 ENTER 12 ENTER 13 ENTER ▶
```

400 ENTER 800 ENTER 2500 ENTER 3900 ENTER 6250 ENTER 8400 ENTER 10000 ENTER

Step 2 Graph the scatter plot.

KEYSTROKES:
```
2nd [STAT PLOT] 1 ENTER ▼ ENTER [ZOOM] 9
```

Step 3 Determine and graph the equation for a curve of best fit.

Use a quartic regression for the data.

KEYSTROKES:
```
STAT ▶ 7 ENTER Y= VARS 5 ▶ ▶ 1 GRAPH
```

The equation is shown in the \(Y= \) screen. If rounded, the regression equation shown on the calculator can be written as the algebraic equation \(y = 0.7x^4 - 17x^3 + 161x^2 - 21x + 293 \).

Step 4 Use the [CALC] feature to find the value of the function for \(x = 8.5 \).

KEYSTROKES:
```
2nd [CALC] 1 8.5 ENTER
```

After 8.5 minutes, the wave could be expected to be felt approximately 4980 kilometers from the epicenter.

MENTAL CHECK The table gives the distance for 7 minutes as 3900 and the distance for 10 minutes as 6250. Since 8.5 is halfway between 7 and 10 a reasonable estimate for the distance is halfway between 3900 and 6250. ✔
Exercises

The table shows how many minutes out of each eight-hour work day are used to pay one day’s worth of taxes.

1. Draw a scatter plot of the data. Then graph several curves of best fit that relate the number of minutes to the number of years. Try LinReg, QuadReg, and CubicReg.

2. Write the equation for the curve that best fits the data.

3. Based on this equation, how many minutes should you expect to work each day in the year 2020 to pay one day’s taxes? Use mental math to check the reasonableness of your estimate.

The table shows the estimated number of alternative-fueled vehicles in use in the United States per year from 1998 to 2007.

4. Draw a scatter plot of the data. Then graph several curves of best fit that relate the distance to the month.

5. Which curve best fits the data? Is that curve best for predicting future values?

6. Use the best-fit equation you think will give the most accurate prediction for how many alternative-fuel vehicles will be in use in 2018. Use mental math to check the reasonableness of your estimate.

The table shows the average distance from the Sun to Earth during each month of the year.

7. Draw a scatter plot of the data. Then graph several curves of best fit that relate the distance to the month.

8. Write the equation for the curve that best fits the data.

9. Based on your regression equation, what is the distance from the Sun to Earth halfway through September?

10. Would you use this model to find the distance from the Sun to Earth in subsequent years? Explain your reasoning.

Extension

11. Write a question that could be answered by examining data. For example, you might estimate the number of people living in your town 5 years from now or predict the future cost of a car.

12. Collect and organize the data you need to answer the question you wrote. You may need to research your topic on the Internet or conduct a survey to collect the data you need.

13. Make a scatter plot and find a regression equation for your data. Then use the regression equation to answer the question.
Simplify. Assume that no variable equals 0.

1. \((3x^2y^{-3})(-2x^3y^5)\)
2. \(4t(3t - r)\)
3. \(\frac{3a^2b^2c}{6a^2b^3c^2}\)
4. \(\left(\frac{p^2r^3}{pr^4}\right)^{2}\)
5. \((4m^2 - 6m + 5) - (6m^2 + 3m - 1)\)
6. \((x + y)(x^2 + 2xy - y^2)\)

7. MULTIPLE CHOICE The volume of the rectangular prism is \(6x^3 + 19x^2 + 2x - 3\). Which polynomial expression represents the area of the base?

A \(6x^4 + 37x^3 + 59x^2 + 3x - 9\)
B \(6x^2 + x + 1\)
C \(6x^2 + x - 1\)
D \(6x + 1\)

Simplify.

8. \((4r^3 - 8r^2 - 13r + 20) \div (2r - 5)\)
9. \(\frac{3x^3 - 16x^2 + 9x - 24}{x - 5}\)
10. Describe the end behavior of the graph. Then determine whether it represents an odd-degree or an even-degree polynomial function and state the number of real zeros.

Refer to the graph.

11. MULTIPLE CHOICE Find \(p(-3)\) if \(p(x) = \frac{2}{3}x^3 + \frac{1}{3}x^2 - 5x\).

F \(0\)
G \(11\)
H \(30\)
J \(36\)

12. PENDULUMS The formula \(L(t) = \frac{9r^2}{\pi^2}\) can be used to find the length of a pendulum in feet when it swings back and forth in \(t\) seconds. Find the length of a pendulum that makes one complete swing in 4 seconds.

13. MULTIPLE CHOICE Find \(3f(a - 4) - 2h(a)\) if \(f(x) = x^2 + 3x\) and \(h(x) = 2x^2 - 3x + 5\).

A \(-a^2 + 15a - 74\)
B \(-a^2 - 2a - 1\)
C \(a^2 + 9a - 2\)
D \(-a^2 - 9a + 2\)

14. ENERGY The power generated by a windmill is a function of the speed of the wind. The approximate power is given by the function \(P(s) = \frac{s^3}{1000}\), where \(s\) represents the speed of the wind in kilometers per hour. Find the units of power \(P(s)\) generated by a windmill when the wind speed is 18 kilometers per hour.

Use \(f(x) = x^3 - 2x^2 - 3x\) for Exercises 15–17.

15. Graph the function.
16. Estimate the \(x\)-coordinates at which the relative maxima and relative minima occur.
17. State the domain and range of the function.
18. Determine the consecutive integer values of \(x\) between which each real zero is located for \(f(x) = 3x^2 - 3x - 1\).

Refer to the graph.

19. Estimate the \(x\)-coordinate of every turning point, and determine if those coordinates are relative maxima or relative minima.
20. Estimate the \(x\)-coordinate of every zero.
21. What is the least possible degree of the function?
Lesson 6-5
Solving Polynomial Equations

Then
- You solved quadratic functions by factoring. (Lesson 5-3)

Now
1. Factor polynomials.
2. Solve polynomial equations by factoring.

Why?
- A small cube is cut out of a larger cube. The volume of the remaining figure is given and the dimensions of each cube need to be determined.
 This can be accomplished by factoring the cubic polynomial $x^3 - y^3$.

Key Concept
Sum and Difference of Cubes

<table>
<thead>
<tr>
<th>Factoring Technique</th>
<th>General Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum of Two Cubes</td>
<td>$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$</td>
</tr>
<tr>
<td>Difference of Two Cubes</td>
<td>$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$</td>
</tr>
</tbody>
</table>

Polynomials that cannot be factored are called **prime polynomials**.

Example 1
Sum and Difference of Cubes

Factor each polynomial. If the polynomial cannot be factored, write prime.

a. $16x^4 + 54xy^3$

$$16x^4 + 54xy^3 = 2x(8x^3 + 27y^3)$$

Factor out the GCF.

$8x^3$ and $27y^3$ are both perfect cubes, so we can factor the sum of two cubes.

$$8x^3 + 27y^3 = (2x)^3 + (3y)^3$$

$$= (2x + 3y)((2x)^2 - (2x)(3y) + (3y)^2)$$

$$= (2x + 3y)(4x^2 - 6xy + 9y^2)$$

Simplify.

$$16x^4 + 54xy^3 = 2x(2x + 3y)(4x^2 - 6xy + 9y^2)$$

Replace the GCF.

b. $9y^3 + 5x^3$

The first term is a perfect cube, but the second term is not. So, the polynomial cannot be factored using the sum of two cubes pattern. The polynomial also cannot be factored using quadratic methods or the GCF. Therefore, it is a prime polynomial.

Guided Practice
1A. $5y^4 - 320yz^3$

1B. $-54w^4 - 250wz^3$
The table below summarizes the most common factoring techniques used with polynomials. Whenever you factor a polynomial, always look for a common factor first. Then determine whether the resulting polynomial factors can be factored again using one or more of the methods below.

<table>
<thead>
<tr>
<th>ConceptSummary</th>
<th>Factoring Techniques</th>
<th>General Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Terms</td>
<td>Factoring Technique</td>
<td>General Case</td>
</tr>
<tr>
<td>any number</td>
<td>Greatest Common Factor (GCF)</td>
<td>$4a^2b^2 - 8ab = 4ab(a^2b - 2)$</td>
</tr>
<tr>
<td>two</td>
<td>Difference of Two Squares</td>
<td>$a^2 - b^2 = (a + b)(a - b)$</td>
</tr>
<tr>
<td></td>
<td>Sum of Two Cubes</td>
<td>$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$</td>
</tr>
<tr>
<td></td>
<td>Difference of Two Cubes</td>
<td>$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$</td>
</tr>
<tr>
<td>three</td>
<td>Perfect Square Trinomials</td>
<td>$a^2 + 2ab + b^2 = (a + b)^2$</td>
</tr>
<tr>
<td></td>
<td>General Trinomials</td>
<td>$a^2 - 2ab + b^2 = (a - b)^2$</td>
</tr>
<tr>
<td>four or more</td>
<td>Grouping</td>
<td>$ax + bx + ay + by = x(a + b) + y(a + b) = (a + b)(x + y)$</td>
</tr>
</tbody>
</table>

Example 2 Factoring by Grouping

Factor each polynomial. If the polynomial cannot be factored, write prime.

a. $8ax + 4bx + 4cx + 6ay + 3by + 3cy$

 $8ax + 4bx + 4cx + 6ay + 3by + 3cy = (8ax + 4bx + 4cx + 6ay + 3by + 3cy) = 4x(2a + b + c) + 3y(2a + b + c) = (4x + 3y)(2a + b + c)$

b. $20fy - 16fz + 15gy + 8hz - 10hy - 12gz$

 $20fy - 16fz + 15gy + 8hz - 10hy - 12gz = (20fy + 15gy - 10hy) + (-16fz - 12gz + 8hz) = 5y(4f + 3g - 2h) + 4z(4f + 3g - 2h) = (5y - 4z)(4f + 3g - 2h)$

Guided Practice

2A. $30ax - 24bx + 6cx - 5ay^2 + 4by^2 - cy^2$

 2B. $13ax + 18bz - 15by - 14az - 32bx + 9ay$

Factoring by grouping is the only method that can be used to factor polynomials with four or more terms. For polynomials with two or three terms, it may be possible to factor according to one of the patterns listed above.

When factoring two terms in which the exponents are 6 or greater, look to factor perfect squares before factoring perfect cubes.
Example 3 Combine Cubes and Squares

Factor each polynomial. If the polynomial cannot be factored, write prime.

a. \(x^6 - y^6 \)

This polynomial could be considered the difference of two squares or the difference of two cubes. The difference of two squares should always be done before the difference of two cubes for easier factoring.

\[
x^6 - y^6 = (x^3 + y^3)(x^3 - y^3) = (x + y)(x^2 - xy + y^2)(x - y)(x^2 + xy + y^2)
\]

b. \(a^3x^2 - 6a^3x + 9a^3 - b^3x^2 + 6b^3x - 9b^3 \)

With six terms, factor by grouping first.

\[
a^3x^2 - 6a^3x + 9a^3 - b^3x^2 + 6b^3x - 9b^3 = (a^3x^2 - 6a^3x + 9a^3) + (-b^3x^2 + 6b^3x - 9b^3)
\]

\[
= a^3(x^2 - 6x + 9) - b^3(x^2 - 6x + 9)
\]

\[
= (a^3 - b^3)(x^2 - 6x + 9)
\]

\[
= (a - b)(a^2 + ab + b^2)(x^2 - 6x + 9)
\]

\[
= (a - b)(a^2 + ab + b^2)(x - 3)^2
\]

Study Tip
Grouping 6 or more terms
Group the terms that have the most common values.

Guided Practice

3A. \(a^6 + b^6 \)

3B. \(x^5 + 4x^4 + 4x^3 + x^2y^3 + 4xy^3 + 4y^3 \)

2 Solve Polynomial Equations In Chapter 5, you learned to solve quadratic equations by factoring and using the Zero Product Property. You can extend these techniques to solve higher-degree polynomial equations.

Real-World Example 4 Solve Polynomial Functions by Factoring

GEOMETRY Refer to the beginning of the lesson.
If the small cube is half the length of the larger cube and the figure is 7000 cubic centimeters, what should be the dimensions of the cubes?

Since the length of the smaller cube is half the length of the larger cube, then their lengths can be represented by \(x \) and \(2x \), respectively. The volume of the object equals the volume of the larger cube minus the volume of the smaller cube.

\[
(2x)^3 - x^3 = 7000
\]

\[
8x^3 - x^3 = 7000
\]

\[
7x^3 = 7000
\]

\[
x^3 = 1000
\]

\[
x^3 - 1000 = 0
\]

\[
(x - 10)(x^2 + 10x + 100) = 0
\]

\[
x - 10 = 0 \quad \text{or} \quad x^2 + 10x + 100 = 0
\]

\[
x = 10 \quad \quad x^2 + 10x + 100 = 0
\]

\[
x = -5 \pm 5\sqrt{3}
\]

Since 10 is the only real solution, the lengths of the cubes are 10 cm and 20 cm.

Guided Practice

4. Determine the dimensions of the cubes if the length of the smaller cube is one third of the length of the larger cube, and the volume of the object is 3250 cubic centimeters.
In some cases, you can rewrite a polynomial in \(x \) in the form \(au^2 + bu + c \). For example, by letting \(u = x^2 \), the expression \(x^4 + 12x^2 + 32 \) can be written as \((x^2)^2 + 12(x^2) + 32 \) or \(u^2 + 12u + 32 \). This new, but equivalent, expression is said to be in quadratic form.

Key Concept: Quadratic Form

Words
An expression that is in quadratic form can be written as \(au^2 + bu + c \) for any numbers \(a, b, \) and \(c, a \neq 0 \), where \(u \) is some expression in \(x \). The expression \(au^2 + bu + c \) is called the quadratic form of the original expression.

Example
\[12x^6 + 8x^3 + 1 = 3(2x^3)^2 + 2(2x^3)^2 + 1 \]

Example 5: Quadratic Form

Write each expression in quadratic form, if possible.

a. \(150n^8 + 40n^4 - 15 \)

\[150n^8 + 40n^4 - 15 = 6(5n^4)^2 + 8(5n^4) - 15 \quad (5n^4)^2 = 25n^8 \]

b. \(y^8 + 12y^3 + 8 \)

This cannot be written in quadratic form since \(y^8 \neq (y^3)^2 \).

Guided Practice

5A. \(x^4 + 5x + 6 \)
5B. \(8x^4 + 12x^2 + 18 \)

You can use quadratic form to solve equations with larger degrees.

Example 6: Solve Equations in Quadratic Form

Solve \(18x^4 - 21x^2 + 3 = 0 \).

\[18x^4 - 21x^2 + 3 = 0 \]
Original equation

\[2(3x^2)^2 - 7(3x^2) + 3 = 0 \]
2(3x^2)^2 = 18x^4

\[2u^2 - 7u + 3 = 0 \]
Let \(u = 3x^2 \).

\[(2u - 1)(u - 3) = 0 \]
Factor.

\[u = \frac{1}{2} \quad \text{or} \quad u = 3 \]
Zero Product Property

\[3x^2 = \frac{1}{2} \quad 3x^2 = 3 \]
Replace \(u \) with \(3x^2 \).

\[x^2 = \frac{1}{6} \quad x^2 = 1 \]
Divide by 3.

\[x = \pm \frac{\sqrt{6}}{6} \quad x = \pm 1 \]
Take the square root.

The solutions of the equation are 1, \(-1\), \(\frac{\sqrt{6}}{6}\), and \(-\frac{\sqrt{6}}{6}\).

Guided Practice

6A. \(4x^4 - 8x^2 + 3 = 0 \)
6B. \(8x^4 + 10x^2 - 12 = 0 \)
Examples 1–3 Factor completely. If the polynomial is not factorable, write **prime**.

1. \(3ax + 2ay - az + 3bx + 2by - bz\)
2. \(2kx + 4mx - 2nx - 3ky - 6my + 3ny\)
3. \(2x^3 + 5y^3\)
4. \(16x^3 + 2h^3\)
5. \(12qw^3 - 12q^4\)
6. \(3w^2 + 5x^2 - 6y^2 + 2z^2 + 7a^2 - 9b^2\)
7. \(a^6x^2 - b^6x^2\)
8. \(x^3y^2 - 8x^3y + 16x^3 + y^5 - 8y^4 + 16y^3\)
9. \(8c^3 - 125d^3\)
10. \(6bx + 12cx + 18dx - by - 2cy - 3dy\)

Example 4 Solve each equation.

11. \(x^4 - 19x^2 + 48 = 0\)
12. \(x^3 - 64 = 0\)
13. \(x^3 + 27 = 0\)
14. \(x^4 - 33x^2 + 200 = 0\)

15. **LANDSCAPING** A boardwalk that is \(x\) feet wide is built around a rectangular pond. The pond is 30 feet wide and 40 feet long. The combined area of the pond and the boardwalk is 2000 square feet. What is the width of the boardwalk?

Example 5 Write each expression in quadratic form, if possible.

16. \(4x^6 - 2x^3 + 8\)
17. \(25y^6 - 5y^2 + 20\)

Example 6 Solve each equation.

18. \(x^4 - 6x^2 + 8 = 0\)
19. \(y^4 - 18y^2 + 72 = 0\)

Practice and Problem Solving

Examples 1–3 Factor completely. If the polynomial is not factorable, write **prime**.

20. \(8c^3 - 27d^3\)
21. \(64x^4 + xy^3\)
22. \(a^8 - a^2b^6\)
23. \(x^6y^3 + y^9\)
24. \(18x^6 + 5y^6\)
25. \(w^3 - 2y^3\)
26. \(gx^2 - 3hx^2 - 6fy^2 - gy^2 + 6fx^2 + 3hy^2\)
27. \(12ax^2 - 20cy^2 - 18bx^2 - 10axy^2 + 15by^2 + 24cx^2\)
28. \(a^3x^2 - 16a^3x + 64a^3 - b^3x^2 + 16b^3x - 64b^3\)
29. \(8x^5 - 25y^3 + 80x^4 - x^2y^3 + 200x^3 - 10xy^3\)

Example 4 Solve each equation.

30. \(x^4 + x^2 - 90 = 0\)
31. \(x^4 - 16x^2 - 720 = 0\)
32. \(x^4 - 7x^2 - 44 = 0\)
33. \(x^4 + 6x^2 - 91 = 0\)
34. \(x^3 + 216 = 0\)
35. \(64x^3 + 1 = 0\)

Example 5 Write each expression in quadratic form, if possible.

36. \(x^4 + 12x^2 - 8\)
37. \(-15x^4 + 18x^2 - 4\)
38. \(8x^6 + 6x^3 + 7\)
39. \(5x^6 - 2x^2 + 8\)
40. \(9x^4 - 21x^4 + 12\)
41. \(16x^{10} + 2x^5 + 6\)

Example 6 Solve each equation.

42. \(x^4 + 6x^2 + 5 = 0\)
43. \(x^4 - 3x^2 - 10 = 0\)
44. \(4x^4 - 14x^2 + 12 = 0\)
45. \(9x^4 - 27x^2 + 20 = 0\)
46. \(4x^4 - 5x^2 - 6 = 0\)
47. \(24x^4 + 14x^4 - 3 = 0\)

Extra Practice begins on page 947.
48. **ZOOLOGY** A species of animal is introduced to a small island. Suppose the population of the species is represented by \(P(t) = -t^4 + 9t^2 + 400 \), where \(t \) is the time in years. Determine when the population becomes zero.

Factor completely. If the polynomial is not factorable, write prime.

49. \(x^4 - 625 \)
50. \(x^6 - 64 \)
51. \(x^5 - 16x \)
52. \(8x^5y^2 - 27x^2y^5 \)

53. \(15ax - 10bx + 5cx + 12ay - 8by + 4cy + 15ax - 10bz + 5cz \)
54. \(6a^2x^2 - 24b^2x^2 + 18c^2x^2 - 5a^2y^3 + 20b^2y^3 - 15c^2y^3 + 2a^2z^2 - 8b^2z^2 + 6c^2z^2 \)
55. \(6x^5 - 11x^4 - 10x^3 - 54x^3 + 99x^2 + 90x \)
56. \(20x^6 - 7x^5 - 6x^4 - 500x^4 + 175x^3 + 150x^2 \)

57. **GEOMETRY** The volume of the figure at the right is 440 cubic centimeters. Find the value of \(x \) and the length, height, and width.

Solve each equation.

58. \(8x^4 + 10x^2 - 3 = 0 \)
59. \(6x^4 - 5x^2 - 4 = 0 \)
60. \(20x^4 - 53x^2 + 18 = 0 \)
61. \(18x^4 + 43x^2 - 5 = 0 \)
62. \(8x^4 - 18x^2 + 4 = 0 \)
63. \(3x^4 - 22x^2 - 45 = 0 \)
64. \(x^6 + 7x^3 - 8 = 0 \)
65. \(x^6 - 26x^3 - 27 = 0 \)
66. \(8x^6 + 999x^3 = 125 \)
67. \(4x^4 - 4x^2 - x^2 + 1 = 0 \)
68. \(x^6 - 9x^4 - x^2 + 9 = 0 \)
69. \(x^4 + 8x^2 + 15 = 0 \)

70. **GEOMETRY** A rectangular prism with dimensions \(x - 2 \), \(x - 4 \), and \(x - 6 \) has a volume equal to 40\(x \) cubic units.

a. Write a polynomial equation using the formula for volume.

b. Use factoring to solve for \(x \).

c. Are any values for \(x \) unreasonable? Explain.

d. What are the dimensions of the prism?

71. **POOL DESIGN** Andrea wants to build a pool following the diagram at the right. The pool will be surrounded by a sidewalk of a constant width.

a. If the total area of the pool itself is to be 336 \(ft^2 \), what is \(x \)?

b. If the value of \(x \) were doubled, what would be the new area of the pool?

c. If the value of \(x \) were halved, what would be the new area of the pool?
72. **BIOLOGY** During an experiment, the number of cells of a virus can be modeled by
\[P(t) = -0.012t^3 - 0.24t^2 + 6.3t + 8000, \]
where \(t \) is the time in hours and \(P \) is the number of cells. Jack wants to determine the times at which there are 8000 cells.

a. Solve for \(t \) by factoring.

b. What method did you use to factor?

c. Which values for \(t \) are reasonable and which are unreasonable? Explain.

d. Graph the function for \(0 \leq t \leq 20 \) using your calculator.

73. **HOME BUILDING** Alicia’s parents want their basement home theater designed according to the diagram at the right.

a. Write a function in terms of \(x \) for the area of the basement.

b. If the basement is to be 1366 square feet, what is \(x \)?

74. **BIOLOGY** A population of parasites in an experiment can be modeled by
\[f(t) = t^3 + 5t^2 - 4t - 20, \]
where \(t \) is the time in days.

a. Use factoring by grouping to determine the values of \(t \) for which \(f(t) = 0 \).

b. At what times does the population reach zero?

c. Are any of the values of \(t \) unreasonable? Explain.

Factor completely. If the polynomial is not factorable, write prime.

75. \(x^6 - 4x^4 - 8x^4 + 32x^2 + 16x^2 - 64 \)

76. \(y^9 - y^6 - 2y^6 + 2y^3 + y^3 - 1 \)

77. \(x^6 - 3x^4y^2 + 3x^2y^4 - y^6 \)

78. **CORRALS** Fredo’s corral, an enclosure for livestock, is currently 32 feet by 40 feet. He wants to enlarge the area to 4.5 times its current area by increasing the length and width by the same amount.

a. Draw a diagram to represent the situation.

b. Write a polynomial equation for the area of the new corral. Then solve the equation by factoring.

c. Graph the function.

d. Which solution is irrelevant? Explain.

H.O.T. Problems Use Higher-Order Thinking Skills

79. **CHALLENGE** Factor \(36x^{2n} + 12x^n + 1 \).

80. **CHALLENGE** Solve \(6x - 11\sqrt{3x} + 12 = 0 \).

81. **REASONING** Find a counterexample to the statement \(a^2 + b^2 = (a + b)^2 \).

82. **OPEN ENDED** The cubic form of an equation is \(ax^3 + bx^2 + cx + d = 0 \). Write an equation with degree 6 that can be written in cubic form.

83. **WRITING IN MATH** Explain how the graph of a polynomial function can help you factor the polynomial.
84. SHORT RESPONSE Tiles numbered from 1 to 6 are placed in a bag and are drawn to determine which of six tasks will be assigned to six people. What is the probability that the tiles numbered 5 and 6 are the last two drawn?

85. STATISTICS Which of the following represents a negative correlation?

A

B

C

D

86. Which of the following most accurately describes the translation of the graph

\[y = (x + 4)^2 - 3 \] to the graph of

\[y = (x - 1)^2 + 3 \]?

F down 1 and to the right 3

G down 6 and to the left 5

H up 1 and to the left 3

J up 6 and to the right 5

87. SAT/ACT The positive difference between \(k \) and \(\frac{1}{12} \) is the same as the positive difference between \(\frac{1}{3} \) and \(\frac{1}{5} \). Which of the following is the value of \(k \)?

A \(\frac{1}{60} \)

B \(\frac{1}{20} \)

C \(\frac{1}{15} \)

D \(\frac{13}{60} \)

E \(\frac{37}{60} \)

Spiral Review

Graph each polynomial function. Estimate the \(x \)-coordinates at which the relative maxima and relative minima occur. (Lesson 6-4)

88. \(f(x) = 2x^3 - 4x^2 + x + 8 \)
19. \(f(x) = -3x^3 + 6x^2 + 2x - 1 \)
90. \(f(x) = -x^3 + 3x^2 + 4x - 6 \)

State the degree and leading coefficient of each polynomial in one variable. If it is not a polynomial in one variable, explain why. (Lesson 6-3)

91. \(f(x) = 4x^3 - 6x^2 + 5x^4 - 8x \)
92. \(f(x) = -2x^5 + 5x^4 + 3x^2 + 9 \)
93. \(f(x) = -x^4 - 3x^3 + 2x^6 - x^7 \)

94. **ELECTRICITY** The impedance in one part of a series circuit is \(3 + 4j \) ohms, and the impedance in another part of the circuit is \(2 - 6j \) ohms. Add these complex numbers to find the total impedance of the circuit. (Lesson 5-4)

95. **SKIING** All 28 members of a ski club went on a trip. The club paid a total of $478 for the equipment. How many skis and snowboards did they rent? (Lesson 3-2)

96. **GEOMETRY** The sides of an angle are parts of two lines whose equations are \(2y + 3x = -7 \) and \(3y - 2x = 9 \). The angle’s vertex is the point where the two sides meet. Find the coordinates of the vertex of the angle. (Lesson 3-1)

Skills Review

Divide. (Lesson 6-2)

97. \((x^2 + 6x - 2) \div (x + 4) \)
98. \((2x^2 + 8x - 10) \div (2x + 1) \)
99. \((8x^3 + 4x^2 + 6) \div (x + 2) \)
You can use a TI-83/84 Plus graphing calculator to solve polynomial equations.

Activity

Solve \(x^4 + 2x^3 = 7 \).

Method 1

Step 1 Graph each side of the equation separately.

Keystrokes:

\[
Y = X, T, θ, n \quad 4 + 2
\]

\[
X, T, θ, n \quad 3 \quad \text{ENTER} \quad 7 \quad \text{ZOOM} \quad 6
\]

Step 2 Find the points of intersection.

Keystrokes:

\[
2\text{nd} \quad \text{[CALC]} \quad 5
\]

Use \(\downarrow \) or \(\uparrow \) to position the cursor on \(Y_1 \), near the first point of intersection.

Press \(\text{ENTER} \quad \text{ENTER} \quad \text{ENTER} \quad \text{ENTER} \).

Then use \(\uparrow \) to position the cursor near the second intersection point.

Press \(\text{ENTER} \quad \text{ENTER} \quad \text{ENTER} \).

Step 3 Examine the graphs.

Determine where the graph of \(y = x^4 + 2x^3 \) intersects \(y = 7 \).

The solutions are approximately \(-2.47\) and \(1.29\).

Method 2

Step 1 Rewrite the equation so that one side is equal to 0.

\[
x^4 + 2x^3 = 7
\]

\[
x^4 + 2x^3 - 7 = 0
\]

Keystrokes:

\[
Y = X, T, θ, n \quad 4 + 2
\]

\[
X, T, θ, n \quad 3 \quad -7 \quad \text{ZOOM} \quad 6
\]

Step 2 Find the \(x \)-intercepts.

Keystrokes:

\[
2\text{nd} \quad \text{[CALC]} \quad 2
\]

Use \(\downarrow \) or \(\uparrow \) to position the cursor to the left of the first \(x \)-intercept. Press \(\text{ENTER} \). Then use \(\uparrow \) to position the cursor to the right of the first \(x \)-intercept. Press \(\text{ENTER} \) to display the \(x \)-intercept. Then, repeat the procedure for any remaining \(x \)-intercepts.

Step 3 Examine the graphs.

Determine where the graph of \(y = x^4 + 2x^3 - 7 \) crosses the \(x \)-axis.

The solutions are approximately \(-2.47\) and \(1.29\).

Exercises

Solve each equation. Round to the nearest hundredth.

1. \(\frac{2}{3}x^3 + x^2 - 5x = -9 \)

2. \(x^3 - 9x^2 + 27x = 20 \)

3. \(x^3 + 1 = 4x^2 \)

4. \(x^6 - 15 = 5x^4 - x^2 \)

5. \(\frac{1}{2}x^5 = \frac{1}{5}x^2 - 2 \)

6. \(x^8 = -x^7 + 3 \)

7. \(x^4 - 15x^2 = -24 \)

8. \(x^3 - 6x^2 + 4x = -6 \)

9. \(x^4 - 15x^2 + x + 65 = 0 \)
The Remainder and Factor Theorems

Example

The number of college students from the United States who study abroad can be modeled by the function
\[S(x) = 0.02x^4 - 0.52x^3 + 4.03x^2 + 0.09x + 77.54, \]
where \(x \) is the number of years since 1993 and \(S(x) \) is the number of students in thousands.

You can use this function to estimate the number of U.S. college students studying abroad in 2018 by evaluating the function for \(x = 25 \). Another method you can use is synthetic substitution.

Key Concept

Remainder Theorem

If a polynomial \(P(x) \) is divided by \(x - r \), the remainder is a constant \(P(r) \), and

\[
\text{Dividend} = \text{Quotient} \times (x - r) + \text{Remainder},
\]

where \(Q(x) \) is a polynomial with degree one less than \(P(x) \).

Example

\[
x^2 + 6x + 2 = (x - 4) \times (x + 10) + 42
\]

Applying the Remainder Theorem using synthetic division to evaluate a function is called **synthetic substitution**. It is a convenient way to find the value of a function, especially when the degree of the polynomial is greater than 2.

NewVocabulary

- **synthetic substitution**
- **depressed polynomial**
Example 1 Synthetic Substitution

If \(f(x) = 3x^4 - 2x^3 + 5x + 2 \), find \(f(4) \).

Method 1 Synthetic Substitution

By the Remainder Theorem, \(f(4) \) should be the remainder when the polynomial is divided by \(x - 4 \).

\[
\begin{array}{c|ccccc}
4 & 3 & -2 & 0 & 5 & 2 \\
& & 12 & 40 & 160 & 660 \\
\hline
& 3 & 10 & 40 & 165 & 662 \\
\end{array}
\]

Because there is no \(x^2 \) term, a zero is placed in this position as a placeholder.

The remainder is 662. Therefore, by using synthetic substitution, \(f(4) = 662 \).

Method 2 Direct Substitution

Replace \(x \) with 4.

\[
\begin{align*}
f(x) &= 3x^4 - 2x^3 + 5x + 2 \\
f(4) &= 3(4)^4 - 2(4)^3 + 5(4) + 2 \\
&= 768 - 128 + 20 + 2 \\
&= 662
\end{align*}
\]

By using direct substitution, \(f(4) = 662 \). Both methods give the same result.

Guided Practice

1A. If \(f(x) = 3x^3 - 6x^2 + x - 11 \), find \(f(3) \).

1B. If \(g(x) = 4x^5 + 2x^3 + x^2 - 1 \), find \(f(-1) \).

Synthetic substitution can be used in situations in which direct substitution would involve cumbersome calculations.

Real-World Example 2 Find Function Values

COLLEGE Refer to the beginning of the lesson. How many U.S. college students will study abroad in 2018?

Use synthetic substitution to divide \(0.02x^4 - 0.52x^3 + 4.03x^2 + 0.09x + 77.54 \) by \(x - 20 \).

\[
\begin{array}{c|ccccc}
25 & 0.02 & -0.52 & 4.03 & 0.09 & 77.54 \\
& & 0.5 & -0.5 & 88.25 & 2208.5 \\
\hline
& 0.02 & -0.02 & 3.53 & 88.34 & 2286.04 \\
\end{array}
\]

In 2018, there will be about 2,286,040 U.S. college students studying abroad.

Guided Practice

2. **COLLEGE** The function \(C(x) = 2.46x^3 - 22.37x^2 + 53.81x + 548.24 \) can be used to approximate the number, in thousands, of international college students studying in the United States \(x \) years since 2000. How many international college students can be expected to study in the U.S. in 2015?
Factors of Polynomials The synthetic division below shows that the quotient of $2x^3 - 3x^2 - 17x + 30$ and $x + 3$ is $2x^2 - 9x + 10$.

\[
\begin{array}{c|cccc}
-3 & 2 & -3 & -17 & 30 \\
 & -6 & 27 & -30 \\
\hline
 & 2 & -9 & 10 & 0
\end{array}
\]

When you divide a polynomial by one of its binomial factors, the quotient is called a depressed polynomial. A depressed polynomial has a degree that is one less than the original polynomial. From the results of the division, and by using the Remainder Theorem, we can make the following statement.

\[
\text{Dividend equals quotient times divisor plus remainder.}
\]

\[
2x^3 - 3x^2 - 17x + 30 = (2x^2 - 9x + 10) \cdot (x + 3) + 0
\]

Since the remainder is 0, $f(-3) = 0$. This means that $x + 3$ is a factor of $2x^3 - 3x^2 - 17x + 30$. This illustrates the Factor Theorem, which is a special case of the Remainder Theorem.

Key Concept Factor Theorem

The binomial $x - r$ is a factor of the polynomial $P(x)$ if and only if $P(r) = 0$.

The Factor Theorem can be used to determine whether a binomial is a factor of a polynomial. It can also be used to determine all of the factors of a polynomial.

Example 3 Use the Factor Theorem

Determine whether $x - 5$ is a factor of $x^3 - 7x^2 + 7x + 15$. Then find the remaining factors of the polynomial.

The binomial $x - 5$ is a factor of the polynomial if 5 is a zero of the related polynomial function. Use the Factor Theorem and synthetic division.

\[
\begin{array}{c|cccc}
5 & 1 & -7 & 7 & 15 \\
 & 5 & -10 & -15 \\
\hline
 & 1 & -2 & -3 & 0
\end{array}
\]

Because the remainder is 0, $x - 5$ is a factor of the polynomial. The polynomial $x^3 - 7x^2 + 7x + 15$ can be factored as $(x - 5)(x^2 - 2x - 3)$. The polynomial $x^2 - 2x - 3$ is the depressed polynomial. Check to see if this polynomial can be factored.

$x^2 - 2x - 3 = (x + 1)(x - 3)$ Factor the trinomial.

So, $x^3 - 7x^2 + 7x + 15 = (x - 5)(x + 1)(x - 3)$.

You can check your answer by multiplying out the factors and seeing if you come up with the initial polynomial.

Guided Practice

3. Show that $x - 2$ is a factor of $x^3 - 7x^2 + 4x + 12$. Then find the remaining factors of the polynomial.
Example 1 Use synthetic substitution to find \(f(4) \) and \(f(-2) \) for each function.

1. \(f(x) = 2x^3 - 5x^2 - x + 14 \)
2. \(f(x) = x^4 + 8x^3 + x^2 - 4x - 10 \)

Example 2 NATURE The approximate number of bald eagle nesting pairs in the United States can be modeled by the function \(P(x) = -0.16x^3 + 15.83x^2 - 154.15x + 1147.97 \), where \(x \) is the number of years since 1970. About how many nesting pairs of bald eagles can be expected in 2018?

Example 3 Given a polynomial and one of its factors, find the remaining factors of the polynomial.

4. \(x^3 - 6x^2 + 11x - 6; x - 1 \)
5. \(x^3 + x^2 - 16x - 16; x + 1 \)
6. \(3x^3 + 10x^2 - x - 12; x - 1 \)
7. \(2x^3 - 5x^2 - 28x + 15; x + 3 \)

Practice and Problem Solving Extra Practice begins on page 947.

Example 1 Use synthetic substitution to find \(f(-5) \) and \(f(2) \) for each function.

8. \(f(x) = x^3 + 2x^2 - 3x + 1 \)
9. \(f(x) = x^2 - 8x + 6 \)
10. \(f(x) = 3x^4 + x^3 - 2x^2 + x + 12 \)
11. \(f(x) = 2x^3 - 8x^2 - 2x + 5 \)
12. \(f(x) = x^3 - 5x + 2 \)
13. \(f(x) = x^5 + 8x^3 + 2x - 15 \)
14. \(f(x) = x^6 - 4x^4 + 3x^2 - 10 \)
15. \(f(x) = x^4 - 6x - 8 \)

Example 2 FINANCIAL LITERACY A specific car’s fuel economy in miles per gallon can be approximated by \(f(x) = 0.00000056x^4 - 0.000018x^3 - 0.016x^2 + 1.38x - 0.38 \), where \(x \) represents the car’s speed in miles per hour. Determine the fuel economy when the car is traveling 40, 50 and 60 miles per hour.

Example 3 Given a polynomial and one of its factors, find the remaining factors of the polynomial.

17. \(x^3 - 3x + 2; x + 2 \)
18. \(x^4 + 2x^3 - 8x - 16; x + 2 \)
19. \(x^3 - x^2 - 10x - 8; x + 2 \)
20. \(x^3 - x^2 - 5x - 3; x - 3 \)
21. \(2x^3 + 17x^2 + 23x - 42; x - 1 \)
22. \(2x^3 + 7x^2 - 53x - 28; x - 4 \)
23. \(x^4 + 2x^3 + 2x^2 - 2x - 3; x - 1 \)
24. \(x^3 + 2x^2 - x - 2; x + 2 \)
25. \(6x^3 - 25x^2 + 2x + 8; 2x + 1 \)
26. \(16x^5 - 32x^4 - 81x + 162; 2x - 3 \)

BOATING A motor boat traveling against waves accelerates from a resting position. Suppose the speed of the boat in feet per second is given by the function \(f(t) = -0.04t^4 + 0.8t^3 + 0.5t^2 - t \), where \(t \) is the time in seconds.

a. Find the speed of the boat at 1, 2, and 3 seconds.

b. It takes 6 seconds for the boat to travel between two buoys while it is accelerating. Use synthetic substitution to find \(f(6) \) and explain what this means.

SALES A company’s sales, in millions of dollars, of consumer electronics can be modeled by \(S(x) = -1.2x^3 + 18x^2 + 26.4x + 678 \), where \(x \) is the number of years since 2005.

a. Use synthetic substitution to estimate the sales for 2017 and 2020.

b. Do you think this model is useful in estimating future sales? Explain.
Use the graph to find all of the factors for each polynomial function.

29. \(f(x) = x^4 - 2x^3 - x^2 + 2x - 24 \)

30. \(f(x) = 20x^3 - 47x^2 + 8x + 12 \)

31. **MULTIPLE REPRESENTATIONS** In this problem, you will consider the function \(f(x) = -9x^5 + 104x^4 - 249x^3 - 456x^2 + 828x + 432 \).
 a. **Algebraic** If \(x - 6 \) is a factor of the function, find the depressed polynomial.
 b. **Tabular** Make a table of values for \(-5 \leq x \leq 6\) for the depressed polynomial.
 c. **Analytical** What conclusions can you make about the locations of the other zeros based on the table? Explain your reasoning.
 d. **Graphical** Graph the original function to confirm your conclusions.

Find values of \(k \) so that each remainder is 3.

32. \((x^2 - x + k) \div (x - 1) \)

33. \((x^2 + kx - 17) \div (x - 2) \)

34. \((x^2 + 5x + 7) \div (x + k) \)

35. \((x^3 + 4x^2 + x + k) \div (x + 2) \)

H.O.T. Problems Use Higher-Order Thinking Skills

36. **OPEN ENDED** Write a polynomial function that has a double root of 1 and a double root of \(-5\). Graph the function.

CHALLENGE Find the solutions of each polynomial function.

37. \((x^2 - 4)^2 - (x^2 - 4) - 2 = 0 \)

38. \((x^2 + 3)^2 - 7(x^2 + 3) + 12 = 0 \)

39. **REASONING** Polynomial \(f(x) \) is divided by \(x - c \). What can you conclude if:
 a. the remainder is 0?
 b. the remainder is 1?
 c. the quotient is 1, and the remainder is 0?

40. **CHALLENGE** Review the definition for the Factor Theorem. Provide a proof of the theorem.

41. **OPEN ENDED** Write a cubic function that has a remainder of 8 for \(f(2) \) and a remainder of \(-5\) for \(f(3) \).

42. **CHALLENGE** Show that the quartic function \(f(x) = ax^4 + bx^3 + cx^2 + dx + e \) will always have a rational zero when the numbers 1, \(-2\), 3, 4, and \(-6\) are randomly assigned to replace \(a \) through \(e \), and all of the numbers are used.

43. **WRITING IN MATH** Explain how the zeros of a function can be located by using the Remainder Theorem and making a table of values for different input values and then comparing the remainders.
44. 27x^3 + y^3 =
 A (3x + y)(3x + y)(3x + y)
 B (3x + y)(9x^2 - 3xy + y^2)
 C (3x - y)(9x^2 + 3xy + y^2)
 D (3x - y)(9x^2 + 9xy + y^2)

45. **GRIDDED RESPONSE** In the figure, a square with side length 2√2 is inscribed in a circle. The area of the circle is kπ. What is the exact value of k?

46. What is the product of the complex numbers (4 + i)(4 - i)?
 F 15
 G 16 - i
 H 17
 J 17 - 8i

47. **SAT/ACT** The measure of the largest angle of a triangle is 14 less than twice the measure of the smallest angle. The third angle measure is 2 more than the measure of the smallest angle. What is the measure of the smallest angle?
 A 46
 B 48
 C 50
 D 52
 E 82

Spiral Review

Solve each equation. (Lesson 6-5)

48. x^4 - 4x^2 - 21 = 0

49. x^4 - 6x^2 = 27

50. 4x^4 - 8x^2 - 96 = 0

Complete each of the following. (Lesson 6-4)

a. Estimate the x-coordinate of every turning point and determine if those coordinates are relative maxima or relative minima.

b. Estimate the x-coordinate of every zero.

c. Determine the smallest possible degree of the function.

d. Determine the domain and range of the function.

51.

52.

53.

54. **HIGHWAY SAFETY** Engineers can use the formula \(d = 0.05v^2 + 1.1v \) to estimate the minimum stopping distance \(d \) in feet for a vehicle traveling \(v \) miles per hour. If a car is able to stop after 125 feet, what is the fastest it could have been traveling when the driver first applied the brakes? (Lesson 5-6)

Solve by graphing. (Lesson 3-1)

55. \(y = 3x - 1 \)
 \(y = -2x + 4 \)

56. \(3x + 2y = 8 \)
 \(-4x + 6y = 11 \)

57. \(5x - 2y = 6 \)
 \(3x - 2y = 2 \)

Skills Review

If \(c(x) = x^2 - 2x \) and \(d(x) = 3x^2 - 6x + 4 \), find each value. (Lesson 6-3)

58. \(c(a + 2) - d(a - 4) \)

59. \(c(a - 3) + d(a + 1) \)

60. \(c(-3a) + d(a + 4) \)

61. \(3d(3a) - 2c(-a) \)

62. \(c(a) + 5d(2a) \)

63. \(-2d(2a + 3) - 4c(a^2 + 1) \)
Consider the polynomial function

\[f(x) = 2x^4 - 1 \]

Also addresses systems, and determine roots quadratic equations and equations.

Solutions of polynomial factors of polynomials, and roots, zeros, the connection between the zeros of a function and the relationship between real numbers to describe you used complex numbers to describe solutions of quadratic equations. (Lesson 5-4)

Then

You used complex numbers to describe solutions of quadratic equations. (Lesson 5-4)

Now

1. Determine the number and type of roots for a polynomial equation.
2. Find the zeros of a polynomial function.

Why?

The function \(g(x) = 1.384x^4 - 0.003x^3 + 0.28x^2 - 0.078x + 1.365 \) can be used to model the average price of a gallon of gasoline in a given year if \(x \) is the number of years since 1990.

To find the average price of gasoline in a specific year, you can use the roots of the related polynomial equation.

Synthetic Types of Roots

Previously, you learned that a zero of a function \(f(x) \) is any value \(c \) such that \(f(c) = 0 \). When the function is graphed, the real zeros of the function are the \(x \)-intercepts of the graph.

Concept Summary

Zeros, Factors, Roots, and Intercepts

Words

Let \(P(x) = a_nx^n + \cdots + a_1x + a_0 \) be a polynomial function. Then the following statements are equivalent.

- \(c \) is a zero of \(P(x) \).
- \(c \) is a root or solution of \(P(x) = 0 \).
- \(x - c \) is a factor of \(a_nx^n + \cdots + a_1x + a_0 \).
- If \(c \) is a real number, then \((c, 0) \) is an \(x \)-intercept of the graph of \(P(x) \).

Example

Consider the polynomial function \(P(x) = x^4 + 2x^3 - 7x^2 - 8x + 12 \).

The zeros of \(P(x) = x^4 + 2x^3 - 7x^2 - 8x + 12 \) are \(-3, -2, 1, \) and \(2\).

The roots of \(x^4 + 2x^3 - 7x^2 - 8x + 12 = 0 \) are \(-3, -2, 1, \) and \(2\).

The factors of \(x^4 + 2x^3 - 7x^2 - 8x + 12 \) are \((x + 3), (x + 2), (x - 1), \) and \((x - 2)\).

The \(x \)-intercepts of the graph of \(P(x) = x^4 + 2x^3 - 7x^2 - 8x + 12 \) are \((-3, 0), (-2, 0), (1, 0), \) and \((2, 0)\).

When solving a polynomial equation with degree greater than zero, there may be one or more real roots or no real roots (the roots are imaginary numbers). Since real numbers and imaginary numbers both belong to the set of complex numbers, all polynomial equations with degree greater than zero will have at least one root in the set of complex numbers. This is the Fundamental Theorem of Algebra.

Key Concept

Fundamental Theorem of Algebra

Every polynomial equation with degree greater than zero has at least one root in the set of complex numbers.
Solve each equation. State the number and type of roots.

a. \(x^2 + 6x + 9 = 0 \)

- Original equation:
 \(x^2 + 6x + 9 = 0 \)
- Take the root of each side:
 \(x + 3 = 0 \)
- Solve for \(x \):
 \(x = -3 \)

Because \((x + 3) \) is twice a factor of \(x^2 + 6x + 9 \), \(-3\) is a double root. Thus, the equation has one real repeated root, \(-3\).

CHECK The graph of the equation touches the \(x \)-axis at \(x = -3 \). Since \(-3\) is a double root, the graph does not cross the axis. ✓

b. \(x^3 + 25x = 0 \)

- Original equation:
 \(x^3 + 25x = 0 \)
- Factor:
 \(x(x^2 + 25) = 0 \)
- Solve for \(x \):
 \(x = 0 \) or \(x^2 + 25 = 0 \)
 \(x^2 = -25 \)
 \(x = \pm \sqrt{-25} = \pm 5i \)

This equation has one real root, \(0\), and two imaginary roots, \(5i\) and \(-5i\).

CHECK The graph of this equation crosses the \(x \)-axis at only one place, \(x = 0 \). ✓

Guided Practice

1A. \(x^3 + 2x = 0 \)

1B. \(x^4 - 16 = 0 \)

1C. \(x^3 + 4x^2 - 7x - 10 = 0 \)

1D. \(3x^3 - x^2 + 9x - 3 = 0 \)

Examine the solutions for each equation in Example 1. Notice that the number of solutions for each equation is the same as the degree of each polynomial. The following corollary to the Fundamental Theorem of Algebra describes this relationship between the degree and the number of roots of a polynomial equation.

Key Concept Corollary to the Fundamental Theorem of Algebra

- **Words**: A polynomial equation of degree \(n \) has exactly \(n \) roots in the set of complex numbers, including repeated roots.
- **Example**:
 - \(x^3 + 2x^2 + 6 \) has 3 roots
 - \(4x^4 - 3x^3 + 5x - 6 \) has 4 roots
 - \(-2x^5 - 3x^2 + 8 \) has 5 roots

Additionally, French mathematician René Descartes discovered a relationship between the signs of the coefficients of a polynomial function and the number of positive and negative real zeros.
Study Tip
Zero at the Origin
If a zero of a function is at the origin, the sum of the number of positive real zeros, negative real zeros, and imaginary zeros is reduced by how many times 0 is a zero of the function.

Key Concept Descartes’ Rule of Signs

Let \(P(x) = a_n x^n + \cdots + a_1 x + a_0 \) be a polynomial function with real coefficients. Then
- the number of positive real zeros of \(P(x) \) is the same as the number of changes in sign of the coefficients of the terms, or is less than this by an even number, and
- the number of negative real zeros of \(P(x) \) is the same as the number of changes in sign of the coefficients of the terms of \(P(-x) \), or is less than this by an even number.

Example 2 Find Numbers of Positive and Negative Zeros

State the possible number of positive real zeros, negative real zeros, and imaginary zeros of \(f(x) = x^6 + 3x^5 - 4x^4 - 6x^3 + x^2 - 8x + 5 \).

Because \(f(x) \) has degree 6, it has six zeros, either real or imaginary. Use Descartes’ Rule of Signs to determine the possible number and type of real zeros.

Count the number of changes in sign for the coefficients of \(f(x) \).

\[
f(x) = x^6 \quad + \quad 3x^5 \quad - \quad 4x^4 \quad - \quad 6x^3 \quad + \quad x^2 \quad - \quad 8x \quad + \quad 5
\]

There are 4 sign changes, so there are 4, 2, or 0 positive real zeros.

Count the number of changes in sign for the coefficients of \(f(-x) \).

\[
f(-x) = (-x)^6 + 3(-x)^5 - 4(-x)^4 - 6(-x)^3 + (-x)^2 - 8(-x) + 5
\]

\[
= x^6 \quad - \quad 3x^5 \quad - \quad 4x^4 \quad + \quad 6x^3 \quad + \quad x^2 \quad + \quad 8x \quad + \quad 5
\]

There are 2 sign changes, so there are 2, or 0 negative real zeros.

Make a chart of the possible combinations of real and imaginary zeros.

<table>
<thead>
<tr>
<th>Number of Positive Real Zeros</th>
<th>Number of Negative Real Zeros</th>
<th>Number of Imaginary Zeros</th>
<th>Total Number of Zeros</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>0</td>
<td>4 + 2 + 0 = 6</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>2</td>
<td>4 + 0 + 2 = 6</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2 + 2 + 2 = 6</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>4</td>
<td>2 + 0 + 4 = 6</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>4</td>
<td>0 + 2 + 4 = 6</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0 + 0 + 6 = 6</td>
</tr>
</tbody>
</table>

Guided Practice

2. State the possible number of positive real zeros, negative real zeros, and imaginary zeros of \(h(x) = 2x^3 + x^4 + 3x^3 - 4x^2 - x + 9 \).

Find Zeros You can use the various strategies and theorems you have learned to find all of the zeros of a function.
Example 3 Use Synthetic Substitution to Find Zeros

Find all of the zeros of \(f(x) = x^4 - 18x^2 + 12x + 80 \).

Step 1 Determine the total number of zeros.
Since \(f(x) \) has degree 4, the function has 4 zeros.

Step 2 Determine the type of zeros.
Examine the number of sign changes for \(f(x) \) and \(f(-x) \).

\[
\begin{align*}
 f(x) &= x^4 - 18x^2 + 12x + 80 \\
 f(-x) &= x^4 - 18x^2 - 12x + 80
\end{align*}
\]

Because there are 2 sign changes for the coefficients of \(f(x) \), the function has 2 or 0 positive real zeros. Because there are 2 sign changes for the coefficients of \(f(-x) \), \(f(x) \) has 2 or 0 negative real zeros. Thus, \(f(x) \) has 4 real zeros, 2 real zeros and 2 imaginary zeros, or 4 imaginary zeros.

Step 3 Determine the real zeros.
List some possible values, and then use synthetic substitution to evaluate \(f(x) \) for real values of \(x \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>1</th>
<th>0</th>
<th>-18</th>
<th>12</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>1</td>
<td>-3</td>
<td>-9</td>
<td>39</td>
<td>-37</td>
</tr>
<tr>
<td>-2</td>
<td>1</td>
<td>-2</td>
<td>-14</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>-17</td>
<td>29</td>
<td>51</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-18</td>
<td>12</td>
<td>80</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-17</td>
<td>-5</td>
<td>75</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>-14</td>
<td>-2</td>
<td>76</td>
</tr>
</tbody>
</table>

From the table, we can see that one zero occurs at \(x = -2 \). Since there are 2 negative real zeros, use synthetic substitution with the depressed polynomial function \(f(x) = x^3 - 2x^2 - 14x + 40 \) to find a second negative zero.

A second negative zero is at \(x = -4 \). Since the depressed polynomial \(x^2 - 6x + 10 \) is quadratic, use the Quadratic Formula to find the remaining zeros of \(f(x) = x^2 - 6x + 10 \).

\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]

Quadratic Formula

\[
= \frac{-(-6) \pm \sqrt{(-6)^2 - 4(1)(10)}}{2(1)}
\]

Replace \(a \) with 1, \(b \) with -6, and \(c \) with 10.

\[
= 3 \pm i
\]

Simplify.

The function has zeros at -4, -2, 3 + i, and 3 - i.

CHECK Graph the function on a graphing calculator. The graph crosses the \(x \)-axis two times, so there are two real zeros. Use the zero function under the \text{CALC} \ menu to locate each zero. The two real zeros are -4 and -2.

Guided Practice

3. Find all of the zeros of \(h(x) = x^3 + 2x^2 + 9x + 18 \).
Review

Vocabulary

complex conjugates

Two complex numbers of the form \(a + bi \) and \(a - bi \) (Lesson 5-4)

In Chapter 5, you learned that the product of complex conjugates is always a real number and that complex roots always come in conjugate pairs. For example, if one root of \(x^2 - 8x + 52 = 0 \) is \(4 + 6i \), then the other root is \(4 - 6i \).

This applies to the zeros of polynomial functions as well. For any polynomial function with real coefficients, if an imaginary number is a zero of that function, its conjugate is also a zero. This is called the **Complex Conjugates Theorem**.

Key Concept

Complex Conjugates Theorem

Words

Let \(a \) and \(b \) be real numbers, and \(b \neq 0 \). If \(a + bi \) is a zero of a polynomial function with real coefficients, then \(a - bi \) is also a zero of the function.

Example

If \(3 + 4i \) is a zero of \(f(x) = x^3 - 4x^2 + 13x + 50 \), then \(3 - 4i \) is also a zero of the function.

When you are given all of the zeros of a polynomial function and are asked to determine the function, convert the zeros to factors and then multiply all of the factors together. The result is the polynomial function.

Example 4

Use Zeros to Write a Polynomial Function

Write a polynomial function of least degree with integral coefficients, the zeros of which include \(-1\) and \(5 - i\).

Understand

If \(5 - i \) is a zero, then \(5 + i \) is also a zero according to the Complex Conjugates Theorem. So, \(x + 1 \), \(x - (5 - i) \), and \(x - (5 + i) \) are factors of the polynomial.

Plan

Write the polynomial function as a product of its factors.

\[
P(x) = (x + 1)[x - (5 - i)][x - (5 + i)]
\]

Solve

Multiply the factors to find the polynomial function.

\[
P(x) = (x + 1) [x - (5 - i)][x - (5 + i)]
\]

\[
= (x + 1) [(x - 5) + i][(x - 5) - i]
\]

\[
= (x + 1) [(x - 5)^2 - i^2]
\]

\[
= (x + 1) [(x^2 - 10x + 25) - (-1)]
\]

\[
= (x + 1)(x^2 - 10x + 26)
\]

\[
= x^3 - 10x^2 + 26x + x^2 - 10x + 26
\]

\[
= x^3 - 9x^2 + 16x + 26
\]

Check

Because there are 3 zeros, the degree of the polynomial function must be 3, so \(P(x) = x^3 - 9x^2 + 16x + 26 \) is a polynomial function of least degree with integral coefficients and zeros of \(-1\), \(5 - i \), and \(5 + i \).

Guided Practice

4. Write a polynomial function of least degree with integral coefficients having zeros that include \(-1\) and \(1 + 2i\).
Check Your Understanding

Example 1
Solve each equation. State the number and type of roots.

1. \(x^2 - 3x - 10 = 0 \)
2. \(x^3 + 12x^2 + 32x = 0 \)
3. \(16x^4 - 81 = 0 \)
4. \(0 = x^3 - 8 \)

Example 2
State the possible number of positive real zeros, negative real zeros, and imaginary zeros of each function.

5. \(f(x) = x^3 - 2x^2 + 2x - 6 \)
6. \(f(x) = 6x^4 + 4x^3 - x^2 - 5x - 7 \)
7. \(f(x) = 3x^5 - 8x^3 + 2x - 4 \)
8. \(f(x) = -2x^4 - 3x^3 - 2x - 5 \)

Example 3
Find all of the zeros of each function.

9. \(f(x) = x^3 + 9x^2 + 6x - 16 \)
10. \(f(x) = x^3 + 7x^2 + 4x + 28 \)
11. \(f(x) = x^4 - 2x^3 - 8x^2 - 32x - 384 \)
12. \(f(x) = x^4 - 6x^3 + 9x^2 + 6x - 10 \)

Example 4
Write a polynomial function of least degree with integral coefficients that have the given zeros.

13. \(4, -1, 6 \)
14. \(3, -1, 1, 2 \)
15. \(-2, 5, -3i \)
16. \(-4, 4 + i \)

Practice and Problem Solving

Example 1
Solve each equation. State the number and type of roots.

17. \(2x^2 + x - 6 = 0 \)
18. \(4x^2 + 1 = 0 \)
19. \(x^3 + 1 = 0 \)
20. \(2x^2 - 5x + 14 = 0 \)
21. \(-3x^2 - 5x + 8 = 0 \)
22. \(8x^3 - 27 = 0 \)
23. \(16x^4 - 625 = 0 \)
24. \(x^3 - 6x^2 + 7x = 0 \)
25. \(x^5 - 8x^3 + 16x = 0 \)
26. \(x^5 + 2x^3 + x = 0 \)

Example 2
State the possible number of positive real zeros, negative real zeros, and imaginary zeros of each function.

27. \(f(x) = x^4 - 5x^3 + 2x^2 + 5x + 7 \)
28. \(f(x) = 2x^3 - 7x^2 - 2x + 12 \)
29. \(f(x) = -3x^5 + 5x^4 + 4x^2 - 8 \)
30. \(f(x) = x^4 - 2x^2 - 5x + 19 \)
31. \(f(x) = 4x^6 - 5x^4 - x^2 + 24 \)
32. \(f(x) = -x^5 + 14x^3 + 18x - 36 \)

Example 3
Find all of the zeros of each function.

33. \(f(x) = x^3 + 7x^2 + 4x - 12 \)
34. \(f(x) = x^3 + x^2 - 17x + 15 \)
35. \(f(x) = x^4 - 3x^3 - 3x^2 - 75x - 700 \)
36. \(f(x) = x^4 + 6x^3 + 73x^2 + 384x + 576 \)
37. \(f(x) = x^4 - 8x^3 + 20x^2 - 32x + 64 \)
38. \(f(x) = x^5 - 8x^3 - 9x \)
39. \(f(x) = x^3 - 5x^2 + 17x - 85 \)
40. \(f(x) = x^3 + 2x \)
41. \(f(x) = 4x^4 + 15x^2 - 4 \)
42. \(f(x) = 9x^4 + 9x^3 + 4x^2 + 4x \)

Example 4
Write a polynomial function of least degree with integral coefficients that have the given zeros.

43. \(5, -2, -1 \)
44. \(-4, -3, 5 \)
45. \(-1, -1, 2i \)
46. \(-3, 1, -3i \)
47. \(0, -5, 3 + i \)
48. \(-2, -3, 4 - 3i \)
BUSINESS A computer manufacturer determines that for each employee, the profit for producing x computers per day is $P(x) = -0.006x^4 + 0.15x^3 - 0.05x^2 - 1.8x$.

a. How many positive real zeros, negative real zeros, and imaginary zeros exist? b. What is the meaning of the zeros in this situation? Match each graph to the given zeros. a. $-3, 4, i, -i$ b. $-4, 3$ c. $-4, 3, i, -i$

53. CONCERTS The amount of money Hoshi’s Music Hall took in from 2003 to 2010 can be modeled by $M(x) = -2.03x^3 + 50.1x^2 - 214x + 4020$, where x is the years since 2003.

a. How many positive real zeros, negative real zeros, and imaginary zeros exist? b. Graph the function using your calculator. c. Approximate all real zeros to the nearest tenth. What is the significance of each zero in the context of the situation? Determine the number of positive real zeros, negative real zeros, and imaginary zeros for each function. Explain your reasoning.

54. degree: 3 55. degree: 5

H.O.T. Problems Use Higher-Order Thinking Skills

56. OPEN ENDED Sketch the graph of a polynomial function with:

a. 3 real, 2 imaginary zeros(148,435),(351,620) b. 4 real zeros(361,435),(554,620) c. 2 imaginary zeros(564,435),(757,620)

57. CHALLENGE Write an equation in factored form of a polynomial function of degree 5 with 2 imaginary zeros, 1 nonintegral zero, and 2 irrational zeros. Explain.

58. WHICH ONE DOESN’T BELONG Determine which equation is not like the others. Explain.

\[r^4 + 1 = 0 \]
\[r^3 + 1 = 0 \]
\[r^2 - 1 = 0 \]
\[r^2 - 8 = 0 \]

59. REASONING Provide a counterexample for each statement.

a. All polynomial functions of degree greater than 2 have at least 1 negative real root. b. All polynomial functions of degree greater than 2 have at least 1 positive real root.(148,709),(564,803)

60. WRITING IN MATH Explain to a friend how you would use Descartes’ Rule of Signs to determine the number of possible positive real roots and the number of possible negative roots of the polynomial function $f(x) = x^4 - 2x^3 + 6x^2 + 5x - 12$.
61. Use the graph of the polynomial function below. Which is not a factor of the polynomial $x^5 + x^4 - 3x^3 - 3x^2 - 4x - 4$?
 A $x - 2$
 B $x + 2$
 C $x - 1$
 D $x + 1$

62. SHORT RESPONSE A window is in the shape of an equilateral triangle. Each side of the triangle is 8 feet long. The window is divided in half by a support from one vertex to the midpoint of the side of the triangle opposite the vertex. Approximately how long is the support?

63. GEOMETRY In rectangle $ABCD$, AD is 8 units long. What is the length of AB?
 F 4 units
 G 8 units
 H $8\sqrt{3}$ units
 J 16 units

64. SAT/ACT The total area of a rectangle is $25a^4 - 16b^2$ square units. Which factors could represent the length and width?
 A $(5a^2 + 4b)$ units and $(5a^2 - 4b)$ units
 B $(5a^2 + 4b)$ units and $(5a^2 - 4b)$ units
 C $(5a^2 - 4b)$ units and $(5a^2 + 4b)$ units
 D $(5a - 4b)$ units and $(5a - 4b)$ units
 E $(5a + 4b)$ units and $(5a - 4b)$ units

65. $f(x) = 4x^3 + 6x^2 - 3x + 2$
66. $f(x) = 5x^4 - 2x^3 + 4x^2 - 6x$
67. $f(x) = 2x^5 - 3x^3 + x^2 - 4$

Factor completely. If the polynomial is not factorable, write prime.
68. $x^6 - y^6$
69. $a^6 + b^6$
70. $4x^2y + 8xy + 16y - 3x^2z - 6xz - 12z$
71. $5a^3 - 30a^2 + 40a + 2a^2b - 12ab + 16b$

72. BUSINESS A mall owner has determined that the relationship between monthly rent charged for store space r (in dollars per square foot) and monthly profit $P(r)$ (in thousands of dollars) can be approximated by $P(r) = -8.1r^2 + 46.9r - 38.2$.
 Solve each quadratic equation or inequality. Explain what each answer tells about the relationship between monthly rent and profit for this mall.
 a. $-8.1r^2 + 46.9r - 38.2 = 0$
 b. $-8.1r^2 + 46.9r - 38.2 > 0$
 c. $-8.1r^2 + 46.9r - 38.2 > 10$
 d. $-8.1r^2 + 46.9r - 38.2 < 10$

73. DIVING To avoid hitting any rocks below, a cliff diver jumps up and out. The equation $h = -16t^2 + 4t + 26$ describes her height h in feet t seconds after jumping. Find the time at which she returns to a height of 26 feet.

74. $a = \{1, 2, 4\}; b = \{1, 2, 3, 6\}$
75. $a = \{1, 5\}; b = \{1, 2, 4, 8\}$
76. $a = \{1, 2, 3, 6\}; b = \{1, 7\}$
Identify Rational Zeros

Usually it is not practical to test all possible zeros of a polynomial function using synthetic substitution. The **Rational Zero Theorem** can help you choose some possible zeros to test. If the leading coefficient is 1, the corollary applies.

Key Concept Rational Zero Theorem

Words
If \(P(x) \) is a polynomial function with integral coefficients, then every rational zero of \(P(x) = 0 \) is of the form \(\frac{p}{q} \), a rational number in simplest form, where \(p \) is a factor of the constant term and \(q \) is a factor of the leading coefficient.

Example
Let \(f(x) = 6x^4 + 22x^3 + 11x^2 - 80x - 40 \). If \(\frac{4}{3} \) is a zero of \(f(x) \), then 4 is a factor of 40, and 3 is a factor of 6.

Corollary to the Rational Zero Theorem
If \(P(x) \) is a polynomial function with integral coefficients, a leading coefficient of 1, and a nonzero constant term, then any rational zeros of \(P(x) \) must be factors of the constant term.

Example 1 Identify Possible Zeros

List all of the possible rational zeros of each function.

a. \(f(x) = 4x^5 + x^4 - 2x^3 - 5x^2 + 8x + 16 \)

If \(\frac{p}{q} \) is a rational zero, then \(p \) is a factor of 16 and \(q \) is a factor of 4.

\(p: \pm 1, \pm 2, \pm 4, \pm 8, \pm 16 \quad q: \pm 1, \pm 2, \pm 4 \)

Write the possible values of \(\frac{p}{q} \) in simplest form.

\(\frac{p}{q} = \pm 1, \pm 2, \pm 4, \pm 8, \pm 16, \pm \frac{1}{2}, \pm \frac{1}{4} \)

b. \(f(x) = x^3 - 2x^2 + 5x + 12 \)

If \(\frac{p}{q} \) is a rational zero, then \(p \) is a factor of 12 and \(q \) is a factor of 1.

\(p: \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12 \quad q: \pm 1 \)

So, \(\frac{p}{q} = \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \) and \(\pm 12 \)

Guided Practice

1A. \(g(x) = 3x^3 - 4x + 10 \)
1B. \(h(x) = x^3 + 11x^2 + 24 \)
Find Rational Zeros Once you have written the possible rational zeros, you can test each number using synthetic substitution and use the other tools you have learned to determine the zeros of a function.

Real-World Example 2 Find Rational Zeros

WOODWORKING Adam is building a computer desk with a separate compartment for the computer. The compartment for the computer is a rectangular prism and will be 8019 cubic inches. Find the dimensions of the computer compartment.

Let \(x = \) width, \(x + 24 = \) length, and \(x + 18 = \) height.

Write an equation for the volume.

\[
\ell \, w \, h = V
\]

\[
(x + 24)(x)(x + 18) = 8019
\]

\[
x^3 + 42x^2 + 432x = 8019
\]

\[
x^3 + 42x^2 + 432x - 8019 = 0
\]

The leading coefficient is 1, so the possible rational zeros are factors of 8019.

\[±1, ±3, ±9, ±11, ±27, ±33, ±81, ±99, ±243, ±297, ±729, ±891, ±2673, \text{ and } ±8019\]

Since length can only be positive, we only need to check positive values.

There is one change of sign of the coefficients, so by Descartes’ Rule of Signs, there is only one positive real zero. Make a table for synthetic division and test possible values.

<table>
<thead>
<tr>
<th>(p)</th>
<th>1</th>
<th>42</th>
<th>432</th>
<th>8019</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>43</td>
<td>475</td>
<td>−7544</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>45</td>
<td>567</td>
<td>−6318</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>51</td>
<td>891</td>
<td>0</td>
</tr>
</tbody>
</table>

One zero is 9. Since there is only one positive real zero, we do not have to test the other numbers. The other dimensions are \(9 + 24 \) or 33 inches, and \(9 + 18 \) or 27 inches.

CHECK Multiply the dimensions and see if they equal the volume of 8019 cubic inches.

\[9 \times 33 \times 27 = 8019 \checkmark\]

Guided Practice

2. **GEOMETRY** The volume of a rectangular prism is 1056 cubic centimeters. The length is 1 centimeter more than the width, and the height is 3 centimeters less than the width. Find the dimensions of the prism.

You usually do not need to test all of the possible zeros. Once you find a zero, you can try to factor the depressed polynomial to find any other zeros.
Example 3 Find All Zeros

Find all of the zeros of \(f(x) = 5x^4 - 8x^3 + 41x^2 - 72x - 36 \).

From the corollary to the Fundamental Theorem of Algebra, there are exactly 4 complex zeros. According to Descartes’ Rule of Signs, there are 3 or 1 positive real zeros and exactly 1 negative real zero. The possible rational zeros are \(\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 9, \pm 12, \pm 18, \pm 36, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \frac{6}{5}, \frac{9}{5}, \frac{12}{5}, \frac{18}{5} \), and \(\pm \frac{36}{5} \).

Make a table and test some possible rational zeros.

Because \(f(2) = 0 \), there is a zero at \(x = 2 \).

Factor the depressed polynomial \(5x^3 + 2x^2 + 45x + 18 \).

\[
\begin{array}{c|ccccc}
 p & q & 5 & -8 & 41 & -72 & -36 \\
\hline
-1 & 5 & -13 & 54 & -126 & 90 \\
1 & 5 & -3 & 38 & -34 & -70 \\
2 & 5 & 2 & 45 & 18 & 0 \\
\end{array}
\]

Write the depressed polynomial.

\[
5x^3 + 2x^2 + 45x + 18 = 0
\]

Group terms.

\[
(5x^3 + 2x^2) + (45x + 18) = 0
\]

Factor.

\[
x^2(5x + 2) + 9(5x + 2) = 0
\]

\[
(x^2 + 9)(5x + 2) = 0
\]

Distributive Property

Zero Product Property

\[
x^2 = -9 \quad \text{or} \quad 5x + 2 = 0
\]

\[
x = \pm 3i \quad \text{or} \quad 5x = -2
\]

\[
x = \pm \frac{3i}{5} \quad \text{or} \quad x = -\frac{2}{5}
\]

There is another real zero at \(x = -\frac{2}{5} \) and two imaginary zeros at \(x = 3i \) and \(x = -3i \).

The zeros of the function are \(\pm \frac{3i}{5}, 2, 3i, \text{ and } -3i \).

Guided Practice

Find all of the zeros of each function.

3A. \(h(x) = 9x^4 + 5x^2 - 4 \)

3B. \(k(x) = 2x^4 - 5x^3 + 20x^2 - 45x + 18 \)

Check Your Understanding

Example 1 List all of the possible rational zeros of each function.

1. \(f(x) = x^3 - 6x^2 - 8x + 24 \)

2. \(f(x) = 2x^4 + 3x^2 - x + 15 \)

Example 2 GEOMETRY The volume of the triangular pyramid is 210 cubic inches. Find the dimensions of the solid.

\[
\text{Volume} = \frac{1}{3} \times \text{base} \times \text{height}
\]

\[
5x + 3 \text{ in.}
\]

\[
2x - 1 \text{ in.}
\]

\[
x \text{ in.}
\]

Find all of the rational zeros of each function.

4. \(f(x) = x^3 - 6x^2 - 13x + 42 \)

5. \(f(x) = 2x^4 + 11x^3 + 26x^2 + 29x + 12 \)

Example 3 Find all of the zeros of each function.

6. \(f(x) = 3x^3 - 2x^2 - 8x + 5 \)

7. \(f(x) = 8x^3 + 14x^2 + 11x + 3 \)

8. \(f(x) = 4x^4 + 13x^3 - 8x^2 + 13x - 12 \)

9. \(f(x) = 4x^4 - 12x^3 + 25x^2 - 14x - 15 \)
Example 1
List all of the possible rational zeros of each function.

10. \(f(x) = x^4 + 8x - 32 \)
11. \(f(x) = x^3 + x^2 - x - 56 \)
12. \(f(x) = 2x^3 + 5x^2 - 8x - 10 \)
13. \(f(x) = 3x^6 - 4x^4 - x^2 - 35 \)
14. \(f(x) = 6x^3 - x^4 + 2x^3 - 3x^2 + 2x - 18 \)
15. \(f(x) = 8x^4 - 4x^3 - 4x^2 + x + 42 \)
16. \(f(x) = 15x^3 + 6x^2 + x + 90 \)
17. \(f(x) = 16x^4 - 5x^2 + 128 \)

Example 2
18. MANUFACTURING A box is to be constructed by cutting out equal squares from the corners of a square piece of cardboard and turning up the sides.

a. Write a function \(V(x) \) for the volume of the box.

b. For what value of \(x \) will the volume of the box equal 1152 cubic centimeters?

c. What will be the volume of the box if \(x = 6 \) centimeters?

Find all of the rational zeros of each function.

19. \(f(x) = x^3 + 10x^2 + 31x + 30 \)
20. \(f(x) = x^3 - 2x^2 - 56x + 192 \)
21. \(f(x) = 4x^3 - 3x^2 - 100x + 75 \)
22. \(f(x) = 4x^4 + 12x^3 - 5x^2 - 21x + 10 \)
23. \(f(x) = x^4 + x^3 - 8x - 8 \)
24. \(f(x) = 2x^4 - 3x^3 - 24x^2 + 4x + 48 \)
25. \(f(x) = 4x^3 - x^2 + 16x + 4 \)
26. \(f(x) = 81x^4 - 256 \)

Example 3
Find all of the zeros of each function.

27. \(f(x) = x^3 + 3x^2 - 25x + 21 \)
28. \(f(x) = 6x^3 + 5x^2 - 9x + 2 \)
29. \(f(x) = x^4 - x^3 - x^2 - x - 2 \)
30. \(f(x) = 10x^3 - 17x^2 - 7x + 2 \)
31. \(f(x) = x^4 - 3x^3 + x^2 - 3x \)
32. \(f(x) = 6x^3 + 11x^2 - 3x - 2 \)
33. \(f(x) = 6x^4 + 22x^3 + 11x^2 - 38x - 40 \)
34. \(f(x) = 2x^3 - 7x^2 - 8x + 28 \)
35. \(f(x) = 9x^5 - 94x^3 + 27x^2 + 40x - 12 \)
36. \(f(x) = x^5 - 2x^4 - 12x^3 - 12x^2 - 13x - 10 \)
37. \(f(x) = 48x^4 - 52x^3 + 13x - 3 \)
38. \(f(x) = 5x^4 - 29x^3 + 55x^2 - 28x \)

39. SWIMMING POOLS A diagram of the swimming pool at the Midtown Community Center is shown below. The pool can hold 9175 cubic feet of water.

a. Write a polynomial function that represents the volume of the swimming pool.

b. What are the possible values of \(x \)? Which of these values are reasonable?

40. ROLLER COASTERS A portion of the path of a certain roller coaster can be modeled by \(f(t) = t^4 - 31t^3 + 308t^2 - 1100t + 1200 \) where \(t \) represents the time in seconds and \(f(t) \) represents the height of the roller coaster. Use the Rational Zero Theorem to determine the four times at which the roller coaster is at ground level.
FOOD A restaurant orders spaghetti sauce in cylindrical metal cans. The volume of each can is about 160π cubic inches, and the height of the can is 6 inches more than the radius.

a. Write a polynomial equation that represents the volume of a can. Use the formula for the volume of a cylinder, $V = \pi r^2 h$.

b. What are the possible values of r? Which of these values are reasonable for this situation?

c. Find the dimensions of the can.

42. Refer to the graph at the right.

a. Find all of the zeros of $f(x) = 2x^3 + 7x^2 + 2x - 3$ and $g(x) = 2x^3 - 7x^2 + 2x + 3$.

b. Determine which function, f or g, is shown in the graph at the right.

43. MUSIC SALES Refer to the beginning of the lesson.

a. Write a polynomial equation that could be used to determine the year in which music sales would be about $9,000,000,000$.

b. List the possible whole number solutions for your equation in part a.

c. Determine the approximate year in which music sales will be $9,000,000,000$.

d. Does the model represent a realistic estimate for all future music sales? Explain your reasoning.

Find all of the zeros of each function.

44. $f(x) = x^5 + 3x^4 - 19x^3 - 43x^2 + 18x + 40$

45. $f(x) = x^5 - x^4 - 23x^3 + 33x^2 + 126x - 216$

H.O.T. Problems Use Higher-Order Thinking Skills

46. ERROR ANALYSIS Doug and Mika are listing all of the possible rational zeros for $f(x) = 4x^4 + 8x^5 + 10x^2 + 3x + 16$. Is either of them correct? Explain your reasoning.

Doug
$\pm 1, \pm 2, \pm 4, \pm 8, \pm 16, \pm \frac{1}{2}, \pm \frac{1}{4}$

Mika
$\pm 1, \pm 2, \pm 4, \pm 8, \pm 16, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{1}{8}$

47. CHALLENGE Give a polynomial function that has zeros at $1 + \sqrt{3}$ and $5 + 2i$.

48. REASONING Determine if the following statement is sometimes, always, or never true. Explain your reasoning.

If all of the possible zeros of a polynomial function are integers, then the leading coefficient of the function is 1 or -1.

49. OPEN ENDED Write a function that has possible zeros of $\pm 18, \pm 9, \pm 6, \pm 3, \pm 2, \pm 1, \pm \frac{9}{4}$, $\pm \frac{9}{2}, \pm \frac{3}{2}, \pm \frac{3}{4}, \pm \frac{1}{2}$, and $\pm \frac{1}{4}$.

50. CHALLENGE The roots of $x^2 + bx + c = 0$ are M and N. If $|M - N| = 1$, express c in terms of b.

51. WRITING IN MATH Explain the process of using the Rational Zero Theorem to determine the number of possible rational zeros of a function.
52. **ALGEBRA** Which of the following is a zero of the function \(f(x) = 12x^5 - 5x^3 + 2x - 9 \)?

- A. \(-6\)
- B. \(-\frac{2}{3}\)
- C. \(\frac{3}{8}\)
- D. 1

53. **SAT/ACT** How many negative real zeros does \(f(x) = x^5 - 2x^4 - 4x^3 + 4x^2 - 5x + 6 \) have?

- A. 5
- B. 4
- C. 3
- D. 2

54. **ALGEBRA** For all nonnegative numbers \(n \), let \(n \) be defined by \(n = \sqrt[n]{x} \). If \(n = 4 \), what is the value of \(n \)?

- A. 2
- B. 3
- C. 16
- D. 64

55. **GRIDDED RESPONSE** What is the \(y \)-intercept of a line that contains the point \((-1, 4)\) and has the same \(x \)-intercept as \(x + 2y = -3 \)?

Spiral Review

Write a polynomial function of least degree with integral coefficients that has the given zeros. ([Lesson 6-7])

- 56. \(6, -3, \sqrt{2} \)
- 57. \(5, -1, 4i \)
- 58. \(-4, -2, i\sqrt{2} \)

Given a polynomial and one of its factors, find the remaining factors of the polynomial. ([Lesson 6-6])

- 59. \(x^4 + 5x^3 + 5x^2 - 5x - 6; x + 3 \)
- 60. \(a^4 - 2a^3 - 17a^2 + 18a + 72; a - 3 \)
- 61. \(x^4 + x^3 - 11x^2 + x - 12; x + i \)

62. **BRIDGES** The supporting cables of the Golden Gate Bridge approximate the shape of a parabola. The parabola can be modeled by the quadratic function \(y = 0.00012x^2 + 6 \), where \(x \) represents the distance from the axis of symmetry and \(y \) represents the height of the cables. The related quadratic equation is \(0.00012x^2 + 6 = 0 \). ([Lesson 5-6])

a. Calculate the value of the discriminant.

b. What does the discriminant tell you about the supporting cables of the Golden Gate Bridge?

63. **RIDES** An amusement park ride carries riders to the top of a 225-foot tower. The riders then free-fall in their seats until they reach 30 feet above the ground. ([Lesson 5-2])

a. Use the formula \(h(t) = -16t^2 + h_0 \) where the time \(t \) is in seconds and the initial height \(h_0 \) is in feet, to find how long the riders are in free-fall.

b. Suppose the designer of the ride wants the riders to experience free-fall for 5 seconds before stopping 30 feet above the ground. What should be the height of the tower?

Skills Review

Simplify. ([Lesson 6-1])

- 64. \((x - 4)(x + 3) \)
- 65. \(3x(x^2 + 4) \)
- 66. \(x^2(x - 2)(x + 1) \)

Find each value if \(f(x) = 6x + 2 \) and \(g(x) = -4x^2 \). ([Lesson 2-1])

- 67. \(f(5) \)
- 68. \(g(-3) \)
- 69. \(f(3c) \)
Study Guide

Key Concepts

Operations with Polynomials (Lessons 6-1 and 6-2)
- To add or subtract: Combine like terms.
- To multiply: Use the Distributive Property.
- To divide: Use long division or synthetic division.

Polynomial Functions and Graphs (Lessons 6-3 and 6-4)
- Turning points of a function are called relative maxima and relative minima.

Solving Polynomial Equations (Lesson 6-5)
- You can factor polynomials by using the GCF, grouping, or quadratic techniques.

The Remainder and Factor Theorems (Lesson 6-6)
- Factor Theorem: The binomial \(x - a \) is a factor of the polynomial \(f(x) \) if and only if \(f(a) = 0 \).

Roots, Zeros, and the Rational Zero Theorem (Lessons 6-7 and 6-8)
- Complex Conjugates Theorem: If \(a + bi \) is a zero of a function, then \(a - bi \) is also a zero.
- Integral Zero Theorem: If the coefficients of a polynomial function are integers such that \(a_0 = 1 \) and \(a_n = 0 \), any rational zeros of the function must be factors of \(a_n \).
- Rational Zero Theorem: If \(P(x) \) is a polynomial function with integral coefficients, then every rational zero of \(P(x) = 0 \) is of the form \(\frac{p}{q} \), a rational number in simplest form, where \(p \) is a factor of the constant term and \(q \) is a factor of the leading coefficient.

Study Organizer

Be sure the Key Concepts are noted in your Foldable.

Key Vocabulary

degree of a polynomial (p. 335)
depressed polynomial (p. 379)
end behavior (p. 350)
extrema (p. 358)
leading coefficient (p. 348)
location principle (p. 357)
polynomial function (p. 349)
polynomial in one variable (p. 348)
power function (p. 349)
prime polynomials (p. 368)
quadratic form (p. 371)
relative maximum (p. 358)
relative minimum (p. 358)
simplify (p. 333)
synthetic division (p. 342)
synthetic substitution (p. 377)
turning points (p. 358)

Vocabulary Check

State whether each sentence is true or false. If false, replace the underlined term to make a true sentence.

1. The coefficient of the first term of a polynomial in standard form is called the leading coefficient.
2. Polynomials that cannot be factored are called polynomials in one variable.
3. A prime polynomial has a degree that is one less than the original polynomial.
4. A point on the graph of a function where no other nearby point has a greater \(y \)-coordinate is called a relative maximum.
5. A polynomial function is a continuous function that can be described by a polynomial equation in one variable.
6. To simplify an expression containing powers means to rewrite the expression without parentheses or negative exponents.
7. Synthetic division is a shortcut method for dividing a polynomial by a binomial.
8. The relative maximum and relative minimum of a function are often referred to as end behavior.
9. When a polynomial is divided by one of its binomial factors, the quotient is called a depressed polynomial.
10. \((x^3)^2 + 3x^3 - 8 = 0\) is a power function.
Lesson-by-Lesson Review

6-1 Operations with Polynomials (pp. 333–339)

Simplify. Assume that no variable equals 0.

11. \(\frac{14x^4y}{2x^3y^5} \)
12. \(3t(t - 5) \)
13. \((4r^2 + 3r - 1) - (3r^2 - 5r + 4) \)
14. \((x^4)^3 \)
15. \((m + p)(m^2 - 2mp + p^3) \)
16. \(3b(2b - 1) + 2b(b + 3) \)

Example 1

Simplify each expression.

a. \((-4a^2b^5)(5ab^3) \)

\[(-4a^2b^5)(5ab^3) = (-4)(5)a^2b^5 + 3 = -20a^4b^8 \]

Product of Powers

b. \((2x^2 + 3x - 8) + (3x^2 - 5x - 7) \)

\[= (2x^2 + 3x^2) + (3x - 5x) + [-8 + (-7)] \]

\[= 5x^2 - 2x - 15 \]

6-2 Dividing Polynomials (pp. 341–347)

Simplify.

17. \(\frac{12x^4y^6 + 8x^3y^7 - 16x^2y^6}{4xy^5} \)
18. \((6y^3 + 13y^2 - 10y - 24) ÷ (y + 2) \)
19. \((a^4 + 5a^2 + 2a^2 - 6a + 4)(a - 2)^{-1} \)
20. \((4a^6 - 5a^4 + 3a^2 - a) ÷ (2a + 1) \)
21. **GEOMETRY** The volume of the rectangular prism is \(3x^3 + 11x^2 - 114x - 80 \) cubic units. What is the area of the base? \(3x + 2 \)

Example 2

Simplify \((6x^3 - 31x^2 - 34x + 22) ÷ (2x - 1) \).

\[2x - 1 \right) 6x^3 - 31x^2 - 34x + 22 \]

\[= 3x^2 - 14x - 24 \]

\[-28x^2 + 34x \]

\[= -48x + 22 \]

\[-48x + 24 \]

\[= -2 \]

The result is \(3x^2 - 14x - 24 - \frac{2}{2x - 1} \).

6-3 Polynomial Functions (pp. 348–355)

State the degree and leading coefficient of each polynomial in one variable. If it is not a polynomial in one variable, explain why.

22. \(5x^6 - 3x^4 + x^3 - 9x^2 + 1 \)
23. \(6xy^2 - xy + y^2 \)
24. \(12x^3 - 5x^4 + 6x^2 - 3x - 3 \)

Find \(p(-2) \) and \(p(x + h) \) for each function.

25. \(p(x) = x^2 + 2x - 3 \)
26. \(p(x) = 3x^2 - x \)
27. \(p(x) = 3 - 5x^2 + x^3 \)

Example 3

What are the degree and leading coefficient of \(4x^3 + 3x^2 - 7x^7 + 4x - 1 \)?

The greatest exponent is 7, so the degree is 7. The leading coefficient is \(-7\).

Example 4

Find \(p(a - 2) \) if \(p(x) = 3x + 2x^2 - x^3 \).

\[p(a - 2) = 3(a - 2) + 2(a - 2)^2 - (a - 2)^3 \]

\[= 3a - 6 + 2a^2 - 8a + 8 - (a^3 - 6a^2 + 12a - 8) \]

\[= -a^3 + 8a^2 - 17a + 10 \]
6-4 Analyzing Graphs of Polynomial Functions (pp. 357–364)

Complete each of the following.

a. Graph each function by making a table of values.

b. Determine the consecutive integer values of x between which each real zero is located.

c. Estimate the x-coordinates at which the relative maxima and minima occur.

28. \(h(x) = x^3 - 4x^2 - 7x + 10 \)
29. \(g(x) = 4x^4 - 21x^2 + 5 \)
30. \(f(x) = x^3 - 3x^2 - 4x + 12 \)
31. \(h(x) = 4x^3 - 6x^2 + 1 \)
32. \(p(x) = x^5 - x^4 + 1 \)

33. BUSINESS Milo tracked the monthly profits for his sports store business for the first six months of the year. They can be modeled by using the following six points: (1, 675), (2, 950), (3, 550), (4, 250), (5, 600), and (6, 400). How many turning points would the graph of a polynomial function through these points have? Describe them.

Example 5

Graph \(f(x) = x^3 + 3x^2 - 4 \) by making a table of values.

<table>
<thead>
<tr>
<th>(x)</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>-4</td>
<td>0</td>
<td>-2</td>
<td>-4</td>
<td>0</td>
<td>16</td>
</tr>
</tbody>
</table>

Plot the points and connect the points with a smooth curve.

6-5 Solving Polynomial Equations by Factoring (pp. 368–375)

Factor completely. If the polynomial is not factorable, write prime.

34. \(a^4 - 16 \)
35. \(x^3 + 6y^3 \)
36. \(54x^3y - 16y^4 \)
37. \(6ay + 4by - 2cy + 3az + 2bz - cz \)

Solve each equation.

38. \(x^3 + 2x^2 - 35x = 0 \)
39. \(8x^4 - 10x^2 + 3 = 0 \)

40. GEOMETRY The volume of the prism is 315 cubic inches. Find the value of x and the length, height, and width.

Example 6

Factor \(r^7 + 64r \).

\[\begin{align*}
 r^7 + 64r &= r(r^6 + 64) \\
 &= r[(r^3)^2 + 4^3] \\
 &= r(r^2 + 4)(r^4 - 4r^2 + 16)
\end{align*} \]

Factor by GCF.

Write as cubes.

Example 7

Solve \(4x^4 - 25x^2 + 36 = 0 \).

\[\begin{align*}
 (x^2 - 4)(4x^2 - 9) &= 0 \\
 x^2 - 4 &= 0 \quad \text{or} \quad 4x^2 - 9 &= 0 \\
 x^2 &= 4 \quad \text{or} \quad 4x^2 &= 9 \\
 x &= \pm 2 \quad \text{or} \quad x &= \pm \frac{3}{2}
\end{align*} \]

The solutions are \(-2, 2, -\frac{3}{2}, \text{ and } \frac{3}{2}\).
6–6 The Remainder and Factor Theorems (pp. 377–382)

Use synthetic substitution to find \(f(-2) \) and \(f(4) \) for each function.

41. \(f(x) = x^2 - 3 \)
42. \(f(x) = x^2 - 5x + 4 \)
43. \(f(x) = x^3 + 4x^2 - 3x + 2 \)
44. \(f(x) = 2x^4 - 3x^3 + 1 \)

Given a polynomial and one of its factors, find the remaining factors of the polynomial.

45. \(3x^3 + 20x^2 + 23x - 10; \ x + 5 \)
46. \(2x^3 + 11x^2 + 17x + 5; \ 2x + 5 \)
47. \(x^3 + 2x^2 - 23x - 60; \ x - 5 \)

Example 8

Determine whether \(x - 6 \) is a factor of \(x^3 - 2x^2 - 21x - 18 \).

\[
\begin{array}{c|cccc}
6 & 1 & -2 & -21 & -18 \\
\hline
 & 1 & 4 & 3 & 0 \\
\end{array}
\]

\(x - 6 \) is a factor because \(r = 0 \).

\(x^3 - 2x^2 - 21x - 18 = (x - 6)(x^2 + 4x + 3) \)

6–7 Roots and Zeros (pp. 383–390)

State the possible number of positive real zeros, negative real zeros, and imaginary zeros of each function.

48. \(f(x) = -2x^3 + 11x^2 - 3x + 2 \)
49. \(f(x) = -4x^3 - 2x^3 - 12x^2 - x - 23 \)
50. \(f(x) = x^6 - 5x^3 + x^2 + x - 6 \)
51. \(f(x) = -2x^5 + 4x^4 + x^2 - 3 \)
52. \(f(x) = -2x^6 + 4x^4 + x^2 - 3x - 3 \)

Example 9

State the possible number of positive real zeros, negative real zeros, and imaginary zeros of \(f(x) = 3x^4 + 2x^3 - 2x^2 - 26x - 48 \).

\(f(x) \) has one sign change, so there is 1 positive real zero.

\(f(-x) \) has 3 sign changes, so there are 3 or 1 negative real zeros.

There are 0 or 2 imaginary zeros.

6–8 Rational Zero Theorem (pp. 391–396)

Find all of the zeros of each function.

53. \(f(x) = x^3 + 4x^2 + 3x - 2 \)
54. \(f(x) = 4x^3 + 4x^2 - x - 1 \)
55. \(f(x) = x^3 + 2x^2 + 4x + 8 \)
56. STORAGE Melissa is building a storage box that is shaped like a rectangular prism. It will have a volume of 96 cubic feet. Using the diagram below, find the dimensions of the box.

Example 10

Find all of the zeros of \(f(x) = x^3 + 4x^2 - 11x - 30 \).

There are exactly 3 zeros.

There are 1 positive real zero and 2 negative real zeros.

The possible rational zeros are \(\pm 1, \pm 2, \pm 3, \pm 5, \pm 6, \pm 10, \pm 15, \pm 30 \).

\[
\begin{array}{c|cccc}
3 & 1 & 4 & -11 & -30 \\
\hline
3 & 3 & 21 & 30 \\
\end{array}
\]

\(x^3 + 4x^2 - 11x - 30 = (x - 3)(x^2 + 7x + 10) = (x - 3)(x + 2)(x + 5) \)

Thus, the zeros are 3, -2, and -5.
Simplify.

1. $(3a)^2(7b)^4$
2. $(7x - 2)(2x + 5)$
3. $(2x^2 + 3x - 4) - (4x^2 - 7x + 1)$
4. $(4x^3 - x^2 + 5x - 4) + (5x - 10)$
5. $(x^4 + 5x^3 + 3x^2 - 8x + 3) ÷ (x + 3)$
6. $(3x^3 - 5x^2 - 23x + 24) ÷ (x - 3)$

7. **MULTIPLE CHOICE** How many unique real zeros does the graph have?

![Graph](image)

A 0
B 2
C 3
D 5

8. If $c(x) = 3x^3 + 5x^2 - 4$, what is the value of $4c(3b)$?

Complete each of the following.

a. Graph each function by making a table of values.

b. Determine consecutive integer values of x between which each real zero is located.

c. Estimate the x-coordinates at which the relative maxima and relative minima occur.

9. $g(x) = x^3 + 4x^2 - 3x + 1$
10. $h(x) = x^4 - 4x^3 - 3x^2 + 6x + 2$

Factor completely. If the polynomial is not factorable, write prime.

11. $8y^4 + x^3y$
12. $2x^2 + 2x + 1$
13. $a^2x + 3ax + 2x - a^2y - 3ay - 2y$

Solve each equation.

14. $8x^3 + 1 = 0$
15. $x^4 - 11x^2 + 28 = 0$

16. **FRAMING** The area of the picture and frame shown below is 168 square inches. What is the width of the frame?

![Picture Frame](image)

17. **MULTIPLE CHOICE** Let $f(x) = x^4 - 3x^3 + 5x - 3$. Use synthetic substitution to find $f(−2)$.

 F 37
 H −21
 G 27
 J −33

Given a polynomial and one of its factors, find the remaining factors of the polynomial.

18. $2x^3 + 15x^2 + 22x - 15; x + 5$
19. $x^3 - 4x^2 + 10x - 12; x - 2$

State the possible number of positive real zeros, negative real zeros, and imaginary zeros of each function.

20. $p(x) = x^3 - x^2 - x - 3$
21. $p(x) = 2x^6 + 5x^4 - x^3 - 5x - 1$

Find all zeros of each function.

22. $p(x) = x^3 - 4x^2 + x + 6$
23. $p(x) = x^3 + 2x^2 + 4x + 8$

24. **GEOMETRY** The volume of the rectangular prism shown is 612 cubic centimeters. Find the dimensions of the prism.

![Rectangular Prism](image)

25. List all possible rational zeros of $f(x) = 2x^4 + 3x^2 − 12x + 8$.

[connectED.mcgraw-hill.com 401]
Draw a Picture

Drawing a picture can be a helpful way for you to visualize how to solve a problem. Sketch your picture on scrap paper or in your test booklet (if allowed). Do not make any marks on your answer sheet other than your answers.

Strategies for Drawing a Picture

Step 1
Read the problem statement carefully.

Ask yourself:
- What am I being asked to solve?
- What information is given in the problem?
- What are the unknowns that I need to model and solve for?

Step 2
Sketch and label your picture.

- Draw your picture as clearly and accurately as possible.
- Label the picture carefully. Be sure to include all of the information given in the problem statement.

Step 3
Solve the problem.

- Use your picture to help you model the problem situation with an equation. Solve the equation.
- Check to be sure your answer makes sense.

Test Practice Example

Read the problem. Identify what you need to know. Then use the information in the problem to solve.

Mr. Nolan has a rectangular swimming pool that measures 25 feet by 14 feet. He wants to have a cement walkway installed around the perimeter of the pool. The combined area of the pool and walkway will be 672 square feet. What will be the width of the walkway?

A 2.75 ft
B 3 ft
C 3.25 ft
D 3.5 ft
Draw a picture to help you visualize the problem situation. Let x represent the unknown width of the cement walkway.

The width of the pool and walkway is $14 + 2x$, and the length is $25 + 2x$. Multiply these polynomial expressions and set the result equal to the combined area, 672 square feet. Then solve for x.

$$(14 + 2x)(25 + 2x) = 672$$

$350 + 78x + 4x^2 = 672$

$4x^2 + 78x - 322 = 0$

$x = -23$ or 3.5

Since the width cannot be negative, the width of the walkway will be 3.5 feet. The correct answer is D.

Exercises

Read each problem. Identify what you need to know. Then use the information in the problem to solve.

1. A farmer has 240 feet of fencing that he wants to use to enclose a rectangular area for his chickens. He plans to build the enclosure using the wall of his barn as one of the walls. What is the maximum amount of area he can enclose?
 - A 7200 ft2
 - B 4960 ft2
 - C 3600 ft2
 - D 3280 ft2

2. Metal washers are made by cutting a hole in a circular piece of metal. Suppose a washer is made by removing the center of a piece of metal with a 1.8-inch diameter. What is the radius of the hole if the washer has an area of 0.65π square inches?
 - F 0.35 in.
 - G 0.38 in.
 - H 0.40 in.
 - J 0.42 in.
Multiple Choice

Read each question. Then fill in the correct answer on the answer document provided by your teacher or on a sheet of paper.

1. Simplify the following expression.
 \[(5n^2 + 11n - 6) - (2n^2 - 5)\]
 A 3n^2 + 11n - 11 C 7n^2 + 11n - 11
 B 3n^2 + 11n - 1 D 7n^2 + 11n - 1

2. What is the effect on the graph of the equation \(y = x^2 + 4\) when it is changed to \(y = x^2 - 3\)?
 F The slope of the graph changes.
 G The graph widens.
 H The graph is the same shape, and the vertex of the graph is moved down.
 J The graph is the same shape, and the vertex of the graph is shifted to the left.

3. Let \(p\) represent the price that Ella charges for a necklace. Let \(f(x)\) represent the total amount of money that Ella makes for selling \(x\) necklaces. The function \(f(x)\) is best represented by
 A \(f(x) = x + p\) C \(f(x) = px\)
 B \(f(x) = xp\) D \(f(x) = x^2 + p\)

4. Which of the following is not a solution to the cubic equation below?
 \(x^3 - 37x - 84 = 0\)
 F -4 H 6
 G -3 J 7

5. What is the solution set for the equation \(3(2x + 1)^2 = 27\)?
 A \{-5, 4\} C \{2, -1\}
 B \{-2, 1\} D \{-3, 3\}

6. How many real zeros does the polynomial function graphed below have?

 F 2 H 4
 G 3 J 5

7. For Marla’s vacation, it will cost $100 to drive her car, plus between $0.50 and $0.75 per mile. If she will drive her car 400 miles, what is a reasonable conclusion about \(c\), the total cost to drive her car on the vacation?
 A \(300 < c < 400\)
 B \(200 < c \leq 400\)
 C \(100 < c < 400\)
 D \(200 \leq c \leq 300\)

8. The function \(P(x) = -0.000047x^2 + 0.027x + 3\) can be used to approximate the population of Ling’s home country between 1960 and 2000. The domain of the function \(x\) represents the number of years since 1960, and \(P\) is given in millions of people. Evaluate \(P(20)\) to estimate the population of the country in 1980.
 F about 2 million people
 G about 2.5 million people
 H about 3 million people
 J about 3.5 million people

9. Solve \(4x - 5 = 2x + 5 - 3x\) for \(x\).
 A -2
 B -1
 C 1
 D 2

Test-Taking Tip

Question 5 You can use substitution to check each possible solution and identify the one that does not result in a true number sentence.
Short Response/Gridded Response

Record your answers on the answer sheet provided by your teacher or on a sheet of paper.

10. A stone path that is x feet wide is built around a rectangular flower garden. The garden is 12 feet wide and 25 feet long as shown below.

If the combined area of the garden and the stone path is 558 square feet, what is the width of the walkway? Express your answer in feet.

11. Factor $64a^4 + ab^3$ completely. Show your work.

12. Simplify $\frac{3x^3 - 4x^2 - 28x - 16}{x + 2}$. Give your answer in factored form. Show your work.

13. GRIDDED RESPONSE What is the value of a in the matrix equation below?

$$\begin{bmatrix} 4 & 3 \\ 2 & 2 \end{bmatrix} \cdot \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 21 \\ 9 \end{bmatrix}$$

14. GRIDDED RESPONSE Matt has a cubic aquarium as shown below. He plans to fill it by emptying cans of water with the dimensions as shown.

About how many cylindrical cans will it take to fill the aquarium?

Extended Response

Record your answers on a sheet of paper. Show your work.

16. The volume of a rectangular prism is 864 cubic centimeters. The length is 1 centimeter less than the height, and the width is 3 centimeters more than the height.

a. Write a polynomial equation that can be used to solve for the height of the prism h.

b. How many possible roots are there for h in the polynomial equation you wrote? Explain.

c. Solve the equation from part a for all real roots h. What are the dimensions of the prism?

17. Scott launches a model rocket from ground level. The rocket’s height h in meters is given by the equation $h = -4.9t^2 + 56t$, where t is the time in seconds after the launch.

a. What is the maximum height the rocket will reach? Round to the nearest tenth of a meter. Show each step and explain your method.

b. How long after it is launched will the rocket reach its maximum height? Round to the nearest tenth of a second.